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A familiar defense of Personalist or Subjective Bayesian theory is that, under a variety 
of sufficient conditions, asymptotically—with increasing shared evidence—almost 
surely, each non-extreme, countably additive Bayesian opinion, when updated by 
conditionalization, converges to certainty that is veridical about the truth/falsity of 
hypotheses of interest. Then, with probability 1 over possible evidential histories, 
personal probabilities track the truth. In this note we examine varieties of failures of 
these asymptotics. In an extreme case, conditional probabilities are deceptive when 
they converge to certainty for a false hypothesis. We establish that proposals for 
so-called “modest” credences, offered by Elga (2016) and by Nielsen and Stewart 
(2019) in response to a concern about Bayesian orgulity raised by Belot (2013), instead 
support deceptive credences. We argue that deceptive credences are not modest, but for 
a reason different than Belot adduces.
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1. Introduction

In this note we continue an old discussion of some familiar results about the 
asymptotics of Bayesian updating (aka conditionalization1) using countably 
additive2 credences. One such result (due to Doob 1953, with details reported in 
Section 2) asserts that, for each hypothesis of interest H, with the exception of a 
probability 0 “null” set of data sequences, the Bayesian agent’s posterior proba-
bilities converge to the truth value of H. Almost surely, the posterior credences 
converge to the value 1 if H is true, and to 0 if H is false. So, with probability 1, 
this Bayesian agent’s asymptotic conditional credences are veridical: they track 
the truth of each hypothesis under investigation. This feature of Bayesian learn-
ing is often alluded to in a justification of Bayesian methodology, e.g., Lindley 
(2006: ch. 11) and Savage (1972: §3.6): Bayesian learning affords sound asymptot-
ics for scientific inference.

In Section 3, we explore the asymptotic behavior of conditional probabili-
ties when these desirable asymptotics fail and credences are not veridical. We 
identify and illustrate five varieties of such failures, in increasing severity. An 
extreme variety occurs when conditional probabilities approach certainty for a 
false hypothesis. We call these extreme cases episodes of deceptive credences, as 
the agent is not able to discriminate between becoming certain of a truth and 
becoming certain of a falsehood.3 Result 1 establishes a sufficient condition for 
credences to be deceptive. In Appendix A, we discuss four other, less extreme 
varieties when conditional probabilities are not veridical.

In Section 4 we apply our findings to a recent exchange prompted by Belot’s 
(2013) charge that familiar results about the asymptotics of Bayesian updating 
display orgulity: an epistemic immodesty about the power of Bayesian reason-
ing. In rebuttal, Elga (2016) argues that orgulity is avoided with some merely 

1. To model changes in personal probability when learning evidence e, Bayesian conditional-
ization requires using the current conditional probability function P(· | ·, e) as the updated condi-
tional probability P’(· | ·) upon learning evidence e.

2. We use the language of events to express these conditions. Let P(·) be a probability function. 
Let E1, . . ., Ek be k-many pairwise disjoint events and E their union: Ei ∩ Ej = ∅ if i ≠ j, and E = ∪i Ei. Finite 
additivity requires: P(E) = ∑ i

k

iP E
=1 ( ). Let E1, . . ., Ek, . . . be countably many pairwise disjoint events and 

E their union: Ei ∩ Ej = ∅ if i ≠ j, and E = ∪i Ei. Countable additivity requires: P(E) = ∑ =

∞

i iP E1 ( ). 
3. Deceptive credence is a worse situation for empiricists than what James (1896: §10) notes, 

where he famously writes,
But if we are empiricists [pragmatists], if we believe that no bell in us tolls to let us know for 

certain when truth is in our grasp, then it seems a piece of idle fantasticality to preach so solemnly 
our duty of waiting for the bell.

It is not merely that the investigator fails to know when, e.g., her/his future credences for an 
hypothesis remain forever within epsilon of the value 1. With deceptive credences, the agent con-
flates asymptotic certainty of true statements with asymptotic certainty of false statements. The 
two cases become indistinguishable!
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finitely additive credences for which the conclusion of Doob’s theorem is false. 
Nielsen and Stewart (2019) offer a synthesis of these two perspectives where 
some finitely additive credences display what they call (understood as a techni-
cal term) reasonable modesty, which avoids the specifics of Belot’s objection. Our 
analysis in Section 4 shows that these applications of finite additivity support 
deceptive credences. We argue that it is at least problematic to call deceptive cre-
dences “modest” in the ordinary sense of the word ‘modest’ when deception has 
positive probability.

2. Doob’s (1953) Strong Law for Asymptotic Bayesian Certainty

For ease of exposition, we use a continuing example throughout this note. Con-
sider a Borel space of possible events based on the set of denumerable sequences 
of binary outcomes from flips of a coin of unknown bias using a mechanism of 
unknown dynamics. The sample space consists of denumerable sequences of 
0s (tails) and 1s (heads). The nested data available to the Bayesian investigator 
are the growing initial histories of length n, hn, arising from one denumerable 
sequence of flips, which corresponds to the unknown state. The class of hypoth-
eses of interest are the elements of the Borel space generated by such histories.

For example, an hypothesis of interest H might be that, with the exception of 
some finite initial history, the observed relative frequency of 1s remains greater 
than 0.5, regardless whether or not there is a well-defined limit of relative fre-
quency for heads. Doob’s result, which we review below, asserts that for the 
Bayesian agent with countably additive credences P over this Borel space, with 
the exception of a P-null set of possible sequences, her/his conditional probabil-
ities, P(H | hn) converge to the truth value of H.

Consider the following, strong-law (countably additive) version of the Bayes-
ian asymptotic approach to certainty, which applies to the continuing example 
of denumerable sequences of 0s and 1s.4 The assumptions for the result that we 
highlight below involve the measurable space, the hypothesis of interest, and the 
learning rule.

The measurable space <X, B>. Let Xi (i = 1, . . .) be a denumerable sequence 
of sets, each equipped with an associated, atomic σ-field Bi, where if xi ∈ Xi then 
{xi} ∈ Bi. That is, the elements of Xi are the atoms of Bi. Xi is the state-space and Bi 
is the set of the measurable events for the ith experiment. Form the infinite Car-
tesian product X = X1 × X2 × . . . of all sequences x = (x1, x2, . . .), where xi ∈ Xi. The 
σ-field B is generated by the measurable rectangles from X: the sets of the form 
A = A1 × A2 × . . . where Ai ∈ Bi and Ai = Xi for all but finitely many values of i. �

4. See, also, Theorem 2, Section IV of Schervish and Seidenfeld (1990).
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B is the smallest σ-field containing each of the individual Bi. As {xi} ∈ Bi for each 
xi ∈ Xi, also B is atomic with atoms the sequences x.

Each hypothesis of interest H is an element of B. That is, in what follows, 
the result about asymptotic certainty applies to an hypothesis H provided that 
it is “identifiable” with respect to the σ-field, B, generated by finite sequences of 
observations.5 These finite sequences constitute the observed data.

We are concerned, in particular, with tracking the nested histories of the 
initial n experimental outcomes:

hn = (x1, . . ., xn), for n = 1, 2, . . .

That is, for x = (x1, x2, . . .) ∈ X, let hn(x) = (x1, . . ., xn) be the first n-terms of x.
The probability assumptions. Let P be a countably additive probability over 

the measurable space <X, B>, and assume there exist well-defined conditional 
probability distributions over hypotheses H ∈ B, given the histories hn: P(H | hn), 
n = 1, . . . .

The learning rule for the Bayesian agent: Consider an agent whose initial 
(“prior”) joint credences are represented by the measure space <X, B, P >. Let Pn 
be this agent’s (“posterior”) credences over <X, B> having learned the history hn.

Bayes’ Rule for updating credences requires that Pn(H) = P(H | hn).
The result in question, which is a substitution instance of Doob’s (1953: 

T.7.4.1), is as follows:
For H ∈ B, let IH: X →{0,1} be the indicator for H. IH(x) = 1 if x ∈ H and IH(x) = 0 

if x ∉ H. The indicator function for H identifies the truth value of H.

•	 Asymptotic Bayesian Certainty: For each H ∈ B,

P{x: limn→∞ P
n(H) = IH(x)} = 1.

In words, subject to the conditions above, the agent’s credences satisfy asymp-
totic certainty about the truth value of the hypothesis H. For each measurable 
hypothesis H, and with respect to a set SH of infinite sequences x that has “prior” 
probability 1, for each x in SH her/his sequence of “posterior” opinions about 
H, P(H | hn(x)), converges to probability 1 or 0, respectively, about the truth or 
falsity of H.

To summarize: For each x in SH, as n → ∞, the sequence of conditional proba-
bilities, P(H | hn(x)), asymptotically correctly identifies the truth of H or of H

c by 

5. See Schervish and Seidenfeld (1990), Examples 4a and 4b for illustrations where H is not an 
element of B and where the asymptotic certainty result fails.
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converging to 1 for the true hypothesis in this pair. In this sense, asymptotically, 
the Bayesian agent learns whether H or Hc obtains.

Definition: Call an element x of X a veridical state if P(H|hn(x)) converges 
to IH(x).

6

In other words, the non-veridical states constitute the failure set for Doob’s result.

3. �Veridical versus Deceptive States and Their Associated Credences

Next, we examine details of conditional probabilities given elements of the fail-
ure set, even when the agent’s credences are countably additive and the other 
assumptions in Doob’s result obtain. Specifically, consider the countably addi-
tive Bayesian agent’s conditional probabilities, P(H|hn), in sequences of histories 
that are generated by points x in the failure set, SH

c—the complement to the distin-
guished set of veridical states. It is important, we think, to distinguish different 
varieties of non-veridical states within the failure set.

At the opposite pole from the veridical states, the states in SH—states whose 
conditional probabilities converge to the truth about H—are states whose his-
tories create conditional probabilities that converge to certainty about the false 
hypothesis in the pair {H, Hc}.

Define x as a deceptive state for hypothesis H if P(H|hn(x)) converges to 1 - IH(x).
For deceptive states, the agent’s sequence of posterior probabilities also cre-

ates asymptotic certainty. This sense of certainty is introspectively indistinguish-
able to the investigator from the asymptotic certainty created by veridical states, 
where asymptotic certainty identifies the truth. Thus, to the extent that veridi-
cal states provide a defense of Bayesian learning—the observed histories hn(x) 
move the agent’s subjective “prior” for H towards certainty in the truth value of 
H—deceptive states move the agent’s subjective credences towards certainty for 
a falsehood. Thus, for the very reasons that states in SH underwrite a Bayesian 
account of Bayesian learning of H, deceptive states frustrate such a claim about 
H. Then, Doob’s result serves a Bayesian’s need provided that the Bayesian agent 
is satisfied that, with probability 1, the actual state is veridical rather than decep-
tive with respect to the hypothesis of interest.

When the failure set for an hypothesis H is deceptive, then the investigator’s 
credences about H converge to 0 or to 1 for all possible data sequences. But this 
convergence is logically independent of the truth of H since the investigator is 
unable to distinguish veridical from non-veridical data histories.

6. For ease of exposition, where the context makes evident the hypothesis H in question, we 
refer to states as veridical or deceptive simpliciter.
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Less problematic than being deceptive, but nonetheless still challenging for 
a Bayesian account of objectivity, is a non-deceptive state x where for each ε > 0, 
infinitely often

|P(H|hn(x)) – IH(x) | > 1–ε.� (1)

Then, with respect to hypothesis H, infinitely often x induces non-veridical con-
ditional probabilities that mimic those from a deceptive state.

Definition: Call a state x that satisfies Equation (1) intermittently deceptive 
for hypothesis H.

Definition: Consider a non-veridical state where, for each ε > 0, infinitely 
often | P(H|hn(x)) – IH(x) | < ε. Call such a state intermittently veridical 
for hypothesis H.

Within the failure set for an hypothesis, the following partition of non-veridical 
states appears to us as increasingly problematic for a defense of Bayesian meth-
odology, in the sense that seeks asymptotic credal certainty about the truth value 
of the hypothesis driven by Bayesian learning. In this list, we prioritize avoiding 
deception over obtaining veridicality:7

(A)	 states that are intermittently veridical but not intermittently deceptive;
(B)	 states that are neither intermittently veridical nor intermittently decep-

tive;
(C)	 states that are both intermittently veridical and intermittently decep-

tive8;
(D)	 states that are intermittently deceptive but not intermittently veridical;
(E)	 states that are deceptive.

We find it helpful to illustrate these categories within the continuing exam-
ple of sequences of binary outcomes. Consider the set of denumerable, binary 
sequences: X = {x: N+ → {0,1}}. That is, in terms of the structural assumptions in 

7. We note in passing that the categories may be further refined by considering sojourn times 
for events that are required to occur infinitely often. Also, the categories may be expanded to 
include, δ-veridical and δ-deceptive, where for some δ > 0, conditional probabilities, P(H|hn(x)), accu-
mulate (respectively) to within δ of IH(x) and to within δ of 1 - IH(x). We do not consider these 
variations here.

8. Our understanding is that case (C) satisfies the conditions for what Belot (2013) calls a 
“flummoxed” credence. Weatherson (2015) discusses varieties of “open minded” credences, 
including those that are “flummoxed,” in connection with Imprecise Probabilities. Here, we focus 
on failures of veridicality for coherent, precise credences.
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Doob’s result, Xi = {0,1}; each Bi is the 4-element algebra {∅, {0}, {1}, {0,1}}, for i = 1, 
2, . . .; and the inclusive σ-field B is the Borel σ-algebra generated by the product 
of the Bi.

First, if H is defined by finitely many coordinates of x (a finite dimensional 
rectangular event) then Pn(H) converges to the indicator function for H, IH, after 
only finitely many observations. Then SH = X and all states are veridical. That is, 
there is no sequence where the conditional probabilities Pn(H) fail to converge to 
IH. Moreover, this situation obtains regardless whether P is countably or merely 
finitely additive, provided solely that P(E | hn) is a conditional probability that 
satisfies the following propriety condition: P(B|A) = 1 whenever ∅ ≠ A ⊆ B.

Next, consider an hypothesis that is logically independent of each finite dimen-
sional rectangular event, an hypothesis that is an element of the tail σ-sub-field �
of B. For instance, note that each sequence x has a well-defined lim inf L(x) and 
lim sup U(x) of the relative frequency for the digit 1. For 0 ≤ l ≤ u ≤ 1, let <l, u> = {x: 
L(x) = l, U(x) = u}. The collection {<l,u>: 0 ≤ l ≤ u ≤ 1} of all such sets is a partition 
of X into B-measurable events, each of which has cardinality of the continuum. 
Figure 1, below, graphs these points in the isosceles right triangle with corners 
<0,0>, <1,1> and <0,1>.

Figure 1

Let H be the subset of X of sequences with a well-defined limit of relative 
frequency for the digit 1. In Figure 1, H corresponds to the set of ordered pairs 
<l,u> with l = u, the (solid blue) line of points along the main diagonal.

For a countably additive personal probability that satisfies de Finetti’s (1937) 
condition of exchangeability, this subset H of X has personal “prior” proba-
bility 1, P(H)  =  1. Also, assume for convenience that this probability P is not 
extreme within the class of exchangeable probabilities: 0 < P({1}) < 1. Then for 
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each sequence x in X, P(hn(x)) > 0, and trivially, also P(H|hn(x)) = 1. For the result 
on asymptotic Bayesian certainty, then SH = H. However, on the complementary 
set, for x ∈ SH

c  the conditional probabilities satisfy: P(H | hn(x)) = 1; hence, each �
x ∈ SH

c  is deceptive: category (E). Moreover, under these conditions, when a state 
is not veridical then it is deceptive: the posterior probability converges to 1- IH(x).

Definition: Call a failure set S deceptiveH
c  if each state in the failure set is 

deceptive for H.

Also, in this case we say that the associated credence for H is deceptive.
We summarize this elementary finding as follows:

Result 1 Suppose that the credence function treats each possible initial 
history hn as not “null”: P(hn(x)) > 0. Then for each hypothesis H (≠ Ω) 
for which P(H) = 1, the failure-set for H is not empty and deceptive.

Moreover, if the space is uncountable, so that there is an uncountable partition of 
the space each of whose elements is an uncountable set, as depicted in Figure 1, 
then we have the following as well:

Corollary For each finitely additive probability P on a space of denu-
merable sequences of (logically independent) random variables, where 
each initial history hn is not “null,” there exists an hypothesis H, with 
P(H) = 1, whose failure set SH

c  is an uncountable set, and that failure set 
is deceptive.

The non-veridical states, x ∈ SH
c , can populate each of the other four categories, 

(A)–(D). We discuss these in Appendix A.

4. Reasonably Modest but Deceptive Failure Sets

Next, we apply these findings to a recent debate about what Belot (2013) alleges 
is mandatory Bayesian orgulity. We understand Belot’s meaning as follows. For 
a Bayesian agent who satisfies, e.g., the conditions for Doob’s result, the set of 
samples where the desired asymptotic certainty fails for an hypothesis H (the 
so-called “failure set” for H) has probability 0. Nonetheless, this failure set may 
be a “large” or “typical” event when considered from a topological perspec-
tive. Specifically, the failure set may be comeager with respect to a privileged 
product topology for the measurable space of data sequences. As we understand 
Belot’s criticism, such a Bayesian suffers orgulity because she/he is obliged by the 
mathematics of Bayesian learning to assign probability 0 to the possible evidence 
where the desired asymptotic result fails, even when this failure set is comeager.
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In a (2016) reply to Belot’s analysis, A. Elga focuses on the premise of count-
able additivity in Doob’s result. Countable additivity is required in neither 
Savage’s (1972) nor de Finetti’s (1974) theories of Bayesian coherence. Elga gives 
an example of a merely finitely additive (and not countably additive) probabil-
ity over denumerable binary sequences and a particular hypothesis H where 
with positive probability (in fact, with probability 1) the investigator’s posterior 
probability fails to converge to the indicator function for H. So, not all finitely 
additive coherent Bayesians display orgulity.

M. Nielsen and R. Stewart (2019) extend the debate by explicating what they 
understand to be Belot’s rival account of reasonable modesty of Bayesian condi-
tional probabilities. They offer a reconciliation of Elga’s rebuttal and Belot’s 
topological perspective. For Nielsen and Stewart, a credence function is modest 
for an hypothesis H provided that it gives (unconditional) positive probability 
to the failure set for the convergence of posterior probabilities to the indicator 
function for H. By this account, each credence in the class of countably additive 
credences is immodest over all hypotheses that are the subject of the asymptotic 
convergence result but have non-empty failure sets. Since requiring modesty for 
all such hypotheses is too strong of a condition even for (merely) finitely additive 
credences—as per the Corollary to Result 1, above—Nielsen and Stewart pro-
pose a standard of reasonable modesty. This condition requires modesty solely for 
failure sets that are typical in the topological sense, for some privileged topology.

With their Propositions 1 and 2, Nielsen and Stewart point out that there 
exist a class of merely finitely additive credences (with cardinality of the contin-
uum) such that each credence function in this class assigns unconditional posi-
tive probability (even probability 1) to each comeager set. Then, such a credence 
displays reasonable modesty for each failure set that is “typical.”

Below, we show that the reasonably modest credences that Nielsen and Stewart 
point to with their Proposition 1, nonetheless, mandate deceptive failure sets for 
specific hypotheses. And as we explain (in Appendix B), Nielsen and Stewart’s 
Proposition 2 provide reasonably modest credences in their technical sense at the 
price of making it impossible to learn about hypotheses that concern unobserved 
parameters, in all familiar statistical models.

First we argue that this sense of “modesty” is mistaken when deception is 
not a null event, regardless whether the modesty is reasonable or not. When the 
investigator’s credences are merely finitely additive, with respect to a particular 
hypothesis the failure set for Doob’s result may have positive prior probability, 
as is well known.9 In such cases, the investigator’s credences are called modest 

9. Moreover, when credences are merely finitely additive, the investigator may design an 
experiment to ensure deceptive Bayesian reasoning. For discussion see Kadane, Schervish, and 
Seidenfeld (1996).
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according to Nielsen and Stewart. Suppose, further, that such a modest credence 
also has a deceptive failure set. Then, each state is either veridical or deceptive. 
But the investigator behaves just as though asymptotic certainty tracks the truth. 
That is, the fact that the set of deceptive states (for a particular hypothesis) has 
positive probability—P(SH

c ) > 0 rather than P(SH
c ) = 0—the fact that the investi-

gator’s credence is “modest,” is irrelevant to the investigator’s decision making. 
Here is why.

Let H be an hypothesis, and suppose that each state is either veridical for H 
or deceptive for H. Then, for each state x, the sequence {P(H | hn(x)): n = 1,2,. . .} 
converges to 1 if and only if either x is veridical and in H, or if x is deceptive and 
in Hc. And {P(H | hn(x)): n = 1,2,. . .} converges to 0 if and only if x is veridical and 
in Hc, or if x is deceptive and in H. Hence, the investigator becomes asymptoti-
cally certain about the truth of H no matter what data are observed. This analy-
sis holds regardless of what prior probability the investigator assigns to H and 
regardless how probable is the failure set. The modesty of P for H, namely that 
P(SH

c ) > 0, is irrelevant to this conclusion. And so too, it is irrelevant to this con-
clusion whether the modesty of P for H is reasonable or not. It is irrelevant whether 
SH

c  is a comeager set or not.
To put this analysis in behavioral terms, suppose the Bayesian investigator 

faces a sequence of decisions. These decisions might be practical, with cardi-
nal utilities that reflect economic or legal, or ethical consequences. Or, these deci-
sions might be cognitive with epistemically motivated utilities, e.g., for desiring 
true hypotheses over false ones, or for desiring more informative  over  less 
informative hypotheses. Or, these might form a mixed sequence of decisions, 
with some practical and some cognitive. Suppose each decision in this sequence 
rides on the probability for one specific hypothesis H and, regarding the corre-
sponding sequence of Bayesian conditional probabilities for H that parallel these 
decisions, the investigator’s credence is deceptive for H. Then, asymptotically, 
the investigator’s sequence of decisions will be determined by the asymptotic 
certainty—the conditional credence for H of 0 or 1—that surely results, no matter 
which sequence of observations obtains. But if also the investigator has a pos-
itive unconditional probability for deception, this “modesty” plays no role in 
her/his sequence of decisions. The “modesty” reported by her/his unconditional 
probability of deception, P(SH

c ) > 0, be it a large or a small positive probability, 
is irrelevant to the sequence of decisions that she/he makes. When a failure set 
is both deceptive and non-null, the Bayesian investigator  ignores this in her/
his decision making, treating all certainties alike. Just as if P(SH

c ) = 0. We do not 
agree, then, that the investigator’s credences are modest for hypothesis H when 
the failure set is deceptive and P(SH

c ) > 0.
One example in which the conditions of this analysis hold was given by Elga 

(2016) and is an instance of our continuing example about binary sequences. 
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In Elga’s example, H is the hypothesis that the binary sequence satisfies 
L(x) = U(x) = .9. In his example the failure set SH

c  is deceptive with probability 1, 
i.e., P{x: x is deceptive for H} = 1.10

A large class of examples of this kind arise by using Proposition 1 of Nielsen 
and Stewart. Here is how Proposition 1 applies to the continuing example of the 
Borel space, B, of binary sequences on {0,1}. Let P1 be a non-extreme, exchange-
able countably additive probability. That is, in addition to being an exchange-
able probability, for each finite initial history, i.e., for each of the 2n possible 
sequences hn, and for each n = 1, 2, . . ., then P1(hn) > 0. By Doob’s result, P1 is not 
modest (in Nielsen and Stewart’s sense) because, for each hypothesis H its failure 
set is P1-null, P1(SH

c ) = 0. Let P2 be a finitely additive, 0–1 (“ultrafilter”) probabil-
ity with the property that if E is a comeager set in B, then P2(E) = 1.

11 Fix 0 < y < 1 
and define P = yP1 + (1-y)P2, the y:(1-y) mixture of these two probabilities.

Nielsen and Stewart’s Proposition 1 establishes that P is reasonably modest, 
since for each hypothesis H, if the failure set SH

c  is comeager, then P(SH
c ) > 0. 

However, as we show next, Proposition 1 creates reasonably modest credences 
that, in the Continuing Example, have failure sets for specific hypotheses that 
have positive probability, are comeager, and are deceptive.

Result 2 In the continuing example, let H be the hypothesis that the 
binary sequence belongs to the set of maximally chaotic relative 
frequencies, corresponding to the (red) point <0,1> in Figure 1. This is 
the set of sequences with lim inf (rel freq “1”) = 0 and lim sup (rel freq 
“1”) = 1. Then the failure set for H under P, SH

c , has positive probabil-
ity, P(SH

c ) = (1-y) > 0, is comeager, and is deceptive.

Proof: Because both P1(H) = 0 and for each history hn, P1(hn) > 0, then P1(H | hn) = 0.
Under P2 there is a distinguished binary sequence xP2

 in the following sense. 
The finite initial histories form a binary branching tree: for each n there are 2n 
distinct histories hn. Because P2 is an “ultrafilter” distribution, then for each n 
and for each possible finite initial history hn of length n, P2(hn) = 0 or P2(hn) = 1. So, 
there is one and only one sequence xP2

 where, for each n,

10. By contrast, in Cisewski, Kadane, Schervish, Seidenfeld, and Stern’s (2018) version of 
Elga’s example, for the same hypothesis H, the failure set, SH

c  = X, is the whole space; whereas, 
for each x and for each n, P(H|hn(x)) = ½ = P(H). Then the failure set generates solely indecisive 
conditional credences: each state is neither intermittently veridical nor intermittently deceptive—
category (B).

11. Existence of such 0–1 finitely additive probabilities is a non-constructive consequence 
(using the Axiom of Choice) that the comeager sets form a filter: They have the finite intersection 
property and are closed under supersets.
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P2(hn( xP2
)) = 1.12 That is, for each sequence x’ ≠ xP2

 there exists an m such that 
for all n > m,

P2(hn(x’)) = 0. Thus, for each x’ ≠ xP2
 there exists an m such that for all n > m,

P(H | hn(x’)) = P1(H | hn(x’)) = 0.
13

Specifically, the failure set SH
c  is either the set H − { xP2

} (if the sequence xP2
 belongs 

to H), or it is the set H ∪ { xP2
} (if the sequence xP2

 belongs to Hc). In either case, 
the failure set SH

c  is deceptive for H. According to Cisewski et al. (2018) H is a 
comeager set. Evidently then, SH

c  is a comeager set where P(SH
c ) = (1-y)P2(SH

c ) = �
(1-y)P2(H) = (1-y) > 0.

14
QED

We emphasize that certainty with deception is indistinguishable from cer-
tainty that is veridical. In the context of Result 2, the investigator can tell when 
the observed history hn differs from the history that would be observed in the 
one distinguished sequence, hn( xP2

). But that recognition provides no basis for 
altering the certainty, P(H | hn) = 0, that results once the observed history departs 
from the distinguished one, once hn ≠ hn( xP2

). Regardless the magnitude of the 
(unconditional) probability of deception, P(SH

c ), the investigator cannot identify 
when certainty is deceptive rather than when it is veridical. Her/his conditional 
credence function, P(· | hn), already takes into account the total evidence avail-
able. Certainty is certainty, full stop.

We have argued above that a credence P is not epistemically modest where 
there is an hypothesis H that has a deceptive failure set SH

c  that is not P-null. 
Then, in the continuing example, each probability P created according to Propo-
sition 1 fails this test of epistemic modesty.

In Summary, it is our view that having a positive probability over non-
veridical states is not sufficient for creating an epistemically modest credence 
because categories (D) or (E) may have positive prior probability as well. Indeed, 
in the continuing example, each probability P created according to Proposition 1 
fails this test of epistemic modesty.

12. Note well that P2 is merely finitely additive as P2(xP
2

) = 0, since each unit set {x}, each denu-
merable sequence x, is a meager set.

13. More generally, if x’ ≠ x
P

2

 the agent’s conditional probabilities become and stay immodest, 
as they become the sequence of countably additive conditional probability function, P1(· | hn(x’)). 
So, though P is modest, with P-probability 1 its conditional credences become and stay immodest.

14. Similarly, Result 2 applies to each hypothesis H of a comeager set whose complement 
includes the support of the countably additive, immodest probability P1.
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5. We Summarize the Principal Conclusion of this Note:

•	 When the failure set for an hypothesis is deceptive and not null, that 
is in conflict with an attitude of epistemic modesty about learning that 
hypothesis.

Regarding the asymptotics of Bayesian certainties, e.g., Doob’s result, neither of 
Nielsen and Stewart’s concepts of modesty, nor reasonable modesty distinguishes 
deceptive from other varieties of failure sets. According to Result 2, in the Con-
tinuing Example each credence P that satisfies Nielsen and Stewart’s Proposition 1 �
admits an hypothesis whose failure set is P-non-null, comeager, and deceptive.

Appendix A

Here, we discuss and illustrate categories (A)–(D) of failure sets using the con-
tinuing example. Restrict the exchangeable “prior” probability P so that, in 
terms of de Finetti’s Representation Theorem, the “mixing prior” for the Bernoulli 
parameter is smooth, e.g., let it be the uniform U[0, 1]. Choose 0 < c < d < 1 and 
consider the hypothesis H = {x: c ≤ L(x) ≤ U(x) ≤ d}. So, with the “uniform” prior, 
P(H) = d–c; so, 1 > P(H) > 0.

The set of veridical states for this credence and hypothesis includes each 
sequence where,

either c < L(x) ≤ U(x) < d—in which case H obtains and limn → ∞ P(H | hn) = 1;
or, either U(x) < c or L(x) > d—in which case Hc obtains and limn → ∞ 
P(H | hn) = 0.

15

The non-veridical states (the failure set) SH
c , the set of sequences where 

P(H | hn(x)) does not converge to the indicator IH(x), include states x such that 
L(x) < c < U(x) or L(x) < d < U(x). For such a state x, P(H|hn(x)) fails to converge 
and

lim inf P(H|hn(x)) = 0 and lim sup P(H|hn(x)) = 1.

Then x is both intermittently veridical and intermittently deceptive for H—
category (C).

15. When either c = L(x) and U(x) < d, or c < L(x) and U(x) = d, or c = L(x) and U(x) = d, then the 
behavior of limn → ∞ P(H | hn) is not determined. This issue is relevant to the illustration of case (A), 
with clause (ii), below.
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In order to illustrate the other three categories of non-veridical states, (A), (B), 
and (D), the following adaptation of the previous construction suffices. Depend-
ing upon which category is to be displayed, consider a state x such that the like-
lihood ratio P(hn(x)|H)/P(hn(x)|H

c) oscillates with suitably chosen bounds, in 
order to have the sequence of posterior odds,

Pn(H)/Pn(Hc)

oscillate to fit the category. This method succeeds because, as is familiar, the 
posterior odds equals the likelihood ratio times the prior odds:

Pn(H)/Pn(Hc) = [P(hn(x)|H)/P(hn(x)|H
c)] × [P(H)/P(Hc)].

We illustrate category (A) using the same hypothesis H = {x: c ≤ L(x) ≤ U(x) ≤ d} �
and credence as above. For a non-veridical state in category (A), consider a 
sequence x such that both:

(i)	 c < U(x) < d. Then x is intermittently veridical as, infinitely often, the rel-
ative frequency of ’1’ falls strictly between c and d, and

(ii)	 L(x) = c but there exists 0 < ρ < ∞, where for only finitely many values �
of n,

	 P(hn(x)|H)/P(hn(x)|H
c)] < ρ—so that x is not intermittently deceptive;

and infinitely often P(hn(x)|H)/P(hn(x)|H
c)] = ρ—so that x is not veridical.

Appendix B

In this appendix we consider Nielsen and Stewart’s Proposition 2, and related 
approaches for creating a reasonably modest credence, P’. We adapt Proposition 2 
to the continuing example of the Borel space of denumerable binary sequences. 
Consider a finitely additive probability P’ on the space of binary sequences in 
accord with Nielsen and Stewart’s Proposition 2, where

(i) P’(hn) > 0 for each possible finite initial history;
and (ii) P’(E) = 1, whenever E comeager.

Nielsen and Stewart’s Proposition 2 asserts that, however P’ is defined on the 
field of finite initial histories, which space we denote by A, A ⊂ B, then P’ may 
be extended to a finitely additive probability that is extreme with respect to the 
field of comeager and meager sets in B. For example, if P1 is a countably additive 
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probability on B, then P’ might agree with P1 on A, while P’(E) = 1 if E is a comea-
ger set. Then, P’ is reasonably modest in the technical sense used by Nielsen and 
Stewart since, whenever a failure set SH

c  is comeager, P’(SH
c ) = 1.

We do not know whether the conclusion of Result 2 extends also to the rea-
sonably modest credences P’ created according to the technique of Proposition 
2. For instance, we do not know, for a general P’, when an hypothesis H has a 
deceptive failure set SH

c  with P’(SH
c ) > 0. Evidently, we are unwilling to grant 

that a credence satisfying Proposition 2 is epistemically modest about learning 
an hypothesis H merely because P’(SH

c ) > 0 whenever SH
c  is a comeager set.

However, there is a second issue that tells against the technique of Proposi-
tion 2 for creating reasonable modesty. In Proposition 1, probability values from 
the immodest countably additive credence P1 for events in the tail field of B are rel-
evant to the values that the reasonably modest credence P gives these events. And, 
as P1 is countably additive, the P1 probability values for tail events are approx-
imated by P1 values in A. In short, under the method used in Proposition 1, P1 
probability values for events in A constrain the reasonably modest values of P(SH

c ). 
However, in Proposition 2 the P1 values in A are not relevant to the P’-values for 
events in the tail field. In Proposition 2, the P’ probability values are stipulated 
to be extreme for comeager sets, regardless how the P’-credences are assigned to 
the elements of the observable A. The upshot is that with P’ credences the inves-
tigator is incapable of learning about comeager sets based on Bayesian learning 
from finite initial histories.

With respect to the continuing example, Cisewski et al. (2018) establish that 
the set of sequences corresponding to the one point <0,1> in Figure 1 is comeager. 
Thus, in order to assign a prior probability 1 to each comeager set, this agent is 
required to hold an extreme credence that the sequence has maximally chaotic 
relative frequencies: P’{x: x ∈ <0,1>} = 1.

As above, let the hypothesis of interest be H = {x: x ∈ <0,1>}: the hypothe-
sis that the sequence has maximally chaotic relative frequencies. Then Result 1 
obtains as P’(H) = 1 and P’(H | hn) = 1 for each n = 1, 2, . . . . No matter what the 
agent observes, her/his posterior credence about H remains extreme. With cre-
dence P’, the failure set for H is the meager set (hence a P’-null set) of continuum 
many states corresponding to each point in Figure 1 other than the corner <0,1>. 
Each point in the failure set for H is deceptive: the failure set SH

c  is deceptive!16 
On what basis do Nielsen and Stewart dismiss the deceptiveness of SH

c  as irrel-
evant to the question whether P’ is an appropriate credence for investigating 

16. The Corollary to Result 1 establishes that the same phenomenon occurs when Nielsen and 
Stewart’s Prop. 2 is generalized to include finitely additive credences that assign positive probabil-
ity to each finite initial history and a positive (but not necessarily probability 1 credence) to each 
comeager set of sequences.
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statistical properties of binary sequences? We speculate their answer is, solely, 
that the failure set SH

c  is meager.
Propositions 1 and 2 do not exhaust the varieties of finitely additive proba-

bilities that assign positive probability to each comeager set in B. For instance, 
one may recombine the techniques from these two Propositions as follows.

Let P1 be an (immodest) countably additive probability on B that assigns pos-
itive probability to each finite initial history. Let P2 be a finitely additive proba-
bility defined on B obtained by the technique of Proposition 2, but where P1 and 
P2 agree on A. So, P2(H) = 1, for the hypothesis H that the sequence is maximally 
chaotic. Then, in the spirit of Proposition 1, define P3 as a (non-trivial) convex 
combination of P1 and P2: let 0 < y < 1 and define P3 = yP1 + (1–y)P2. Then P3 avoids 
the difficulty displayed by the probability P’ of Proposition 2, discussed above, 
namely P3(H) = 1–y < 1. There is no prior certainty under P3 that the sequence is 
maximally chaotic.

But P3 has its own difficulties. Here are two. The Corollary applies to P3 with 
the hypothesis H~ : that the sequence is either maximally chaotic or has a well-
defined limit of relative frequency. In Figure 1, H~ corresponds to the sequences 
either in the set corresponding to the point <0,1> or in the set of points with 
well-defined limits of relative frequency, where L(x) = U(x). The P3 failure set for 
H~ is uncountable and deceptive, though meager. Second, P3 makes all observa-
tions irrelevant for learning about the hypothesis H: the sequence is maximally 
chaotic. This follows because

P3(hn | H) = P2(hn) = P1(hn) = P3(hn).

So, for each initial history, hn

P3(H | hn) = P3(hn | H) × P(H)/P3(hn) = P3(H) = (1–y)

Independent of the history hn.
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