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I argue for an interpretation of Euclid’s postulates as principles grounding the  science 
of measurement. Euclid’s Elements can then be viewed as an application of these 
basic principles of measurement to what I call general measurements—that is, metric 
comparisons between objects that are only partially specified. As a consequence, 
rather than being viewed as a tool for the production of certainty, mathematical 
proof can then be interpreted as the tool with which such general measurements 
are performed. This gives, I argue, a more satisfying story of the origin of proof in 
Ancient Greece, and of the status of Euclid’s postulates.

1. Introduction

There is much that remains mysterious about Euclid and his seminal work The 
Elements. Many modern mathematicians think of Euclid as pursuing (or even 
inventing) something like the modern axiomatic method, albeit crudely. But 
whether this sort of understanding of Euclid is accurate or anachronistic is a 
challenging question. The Elements itself offers little guidance on the matter. 
Even in modern, highly formal mathematical texts the author will typically 
give some sort of preamble to orient the reader with respect to the goals and 
 methods of what is to follow. Dissappointingly, nothing of this sort happens 
in The  Elements. Euclid simply presents us with a list of definitions, a list of 
 postulates, and a list of so-called ‘common notions’, and then begins his proofs. 
The  definitions, postulates and common notions are not referenced when they are 
later used—in fact, many definitions are not used in any obvious way  anywhere 
in the text, and many of the proofs appear to rely on principles that are not 
 contained in the definitions, postulates or common notions. As a result,  questions 
about Euclid’s broader goals, and his general conception of mathematics and 
its  methodology, are left completely open. There is consequently something 
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unavoidably speculative about all attempts to place The Elements in a broader 
philosophical—or even mathematical—framework. It is in this unabashed spirit 
of speculation that I too shall need to proceed. <kjdavey@uchicago.edu>

Euclid’s five postulates will be one of my main points of interest. They are 
as follows:1

Postulate 1: Let the following be postulated: to draw a straight line from 
any point to any point.
Postulate 2: To produce a finite straight line continuously in a straight 
line.
Postulate 3: To describe a circle with any centre and distance.
Postulate 4: That all right angles are equal to one another.
Postulate 5: That, if a straight line falling on two straight lines make 
the interior angles on the same side less than two right angles, the two 
straight lines, if produced indefinitely, meet on that side on which are the 
angles less than the two right angles.

What sort of thing are these postulates, and what role are they supposed to play? 
They are clearly supposed to be basic principles from which the theorems of the 
Elements can be deduced (on some conception or other of deduction).2 But basic 
in what sense? In a paper on the nature of mathematical postulates Feferman 
(2000) quotes the OED as telling us that a postulate is ‘a self-evident proposition 
requiring no formal demonstration to prove its truth, but received and assented 
to as soon as mentioned.’ Kline also somewhat controversially suggests:

Because the Greeks sought truths and had decided on deductive proof, 
they had to obtain postulates that were themselves truths. They did find 
truths whose truth was self-evident to them. . . . Plato applied his theory 
of anamnesis, that we have had direct experience of truth in a period of 
existence as souls in another world before coming to earth, and we have 
but to recall this experience to know that these truths included the pos-
tulates of geometry. (1972)

In the spirit of these views, are Euclid’s postulates supposed to be a set of self- 
evident claims on which the discipline of geometry is then based? Or, at the other 
extreme, do the postulates just represent a more or less arbitrary starting point 
from which we may begin the mathematical business of proving the  theorems of 

1. I work throughout with Heath’s translations, as presented in Heath (1908).
2. For an excellent discussion of deduction in Greek mathematics, see Netz (1999).
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geometry, with no claim that they have any special sort of epistemic status, and 
no claim that they are obvious in any particular way?

There are reasons, I think, to be unhappy with both of these extremes. While 
some of Euclid’s postulates could perhaps be regarded as self-evident, it is far 
from clear that this could be said of Postulate 5 (the so-called ‘Parallel Postulate’). 
Moreover, in other mathematical works of Euclid—such as his Optics ( Burton 
1945)—the basic assumptions from which his derivations proceed seem even 
less immediate. There is thus little historical or textual reason to think that the 
mathematical practice of the Greeks demanded that mathematics only proceed 
from something like ‘self-evident’ starting points.3

But to give up on the idea that there is anything epistemically special at all 
about Euclid’s postulates also seems wrong-headed (or at least, so I shall argue.) 
There are many different senses, after all, in which a statement may turn out to 
occupy an epistemically privileged position.

The challenge then is to identify some sense in which, even though Euclid’s 
postulates fall short of being self-evident truths, they nevertheless represent 
genuine starting points for the mathematical practice they define. Meeting this 
challenge will be a large part of the goal of this paper.

Our investigations here will also connect (albeit somewhat loosely) with 
another puzzling aspect of the Elements. In modern mathematical language, a 
statement of something like the Pythagorean Theorem might go as follows:

Pythagoras’s Theorem: Let ∆ABC be a right angled triangle with AB the 
hypotenuse and C the vertex at which the right angle lies. Suppose that 
the sides CB, CA and AB of the triangle have lengths a, b and c respec-
tively. Then a b c2 + =2 2.

In this statement of the theorem, it is simply presupposed that each leg of the 
triangle is associated with a unique real number giving its length. The main con-
tent of the theorem—that a b c2 + =2 2—is then a claim that a certain mathematical 
relation holds between these real numbers.

Indeed, in most modern mathematical presentations of Euclidean geometry, 
it is simply assumed that Euclidean space is a metric space, and thus that all 
geometric line segments have corresponding lengths given by a real number. 
This metrical structure then provides us with a criterion for when two line seg-
ments have equal lengths, or when one is greater in length than another. The 
same sort of assumption is typically made of angles—in modern presentations 
of geometry, it is simply assumed that to each geometrical angle, there corre-
sponds some real number between 0 and 2p giving the magnitude of the angle.  

3. This is a point Meuller makes in a different context; see Mueller (1969: 294).



	 On	Euclid	and	the	Genealogy	of	Proof • 57

Ergo • vol. 8, no. 3 • 2021

This magnitude then similarly provides us with a criterion for the equality or 
inequality of angles. Likewise for areas, and so on. As in the example of the 
Pythagorean Theorem given above, modern presentations of geometry then 
tend to present their theorems as facts about the mathematical relations that 
hold between these quantities themselves. (Think of theorems such as that the 
area of a circle is given by A r�� 2, or that the magnitudes of the angles of a tri-
angle � , � and γ  satisfy � � � �� � 180.)

What is interesting about Euclid, however, is that he does not present his 
theorems in this way. Whenever he can, Euclid states his theorems as facts about 
the relations that hold between geometrical objects themselves, rather than as 
facts about the relations that hold between mathematical quantities that may be 
associated with those geometrical objects. So for example, in Book I Proposition 
47 of the Elements, Euclid states Pythagoras’s Theorem as follows:

Pythagoras’s Theorem: In right-angled triangles the square on the side 
subtending the right angle is equal to the squares on the sides containing 
the right angle.

The following sort of figure then accompanies the theorem:

A B

C

D E

F

G
H

I

Here, we suppose that CAIH , CBFG and ABED are squares constructed on 
CA, CB, and AB respectively. In Euclid’s formulation, the Pythagorean The-
orem is not first and foremost a theorem connecting three real numbers a, b  
and c, but rather a theorem connecting three geometric objects, namely, the 
squares CAIH, CBFG and ABED. An inspection of Euclid’s proof shows that 
in stating that the square ABED is equal to the squares CAIH and CBFG, Euclid 
does not mean that there are mathematical quantities (i.e., real numbers) corre-
sponding to the areas of each of these squares such that one of these real num-
bers is the sum of the other two, but rather something like that the two smaller 
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squares can be decomposed and re-assembled to form the larger square.4 In this 
way, Euclid’s version of Pythagoras’s Theorem is then a statement with purely 
geometric content. At no point in the statement or proof of Pythagoras’s Theo-
rem, or any theorem on which it depends, is it assumed that lengths, angles or 
areas correspond to numerical quantities.5

Why does Euclid present his theorems this way? It is not that the very idea 
of associating physical magnitudes with numbers was somehow foreign. To 
the contrary, the Greeks had a well developed set of units of measurement and 
many sophisticated measuring instruments. In such measurements, quanti-
ties were unproblematically associated with geometrical objects in the natural 
world. Of course, it is certainly true that Euclid did not have the notation to 
write something as compact as the equation a2 2 2� �b c . But it is difficult to 
see this as a barrier to viewing geometry as a science that first and foremost 
tells us the relations that hold between certain sorts of quantities or numbers. 
Indeed, in the Chinese or Indian ancient mathematical traditions geometri-
cal results were typically presented as relations holding between numerical 
quantities. (See for example Kangshen, Crossley, & Lun 1999.) It would thus 
be hard to argue that for some reason or other one should expect early mathe-
matical traditions to present geometrical results in something like the manner 
of Euclid.

The hypothesis I would like to advance is that the very idea that lengths, 
angles and areas can be compared is one that Euclid and his contemporaries took 
not to be given, but rather to require justification. Instead of beginning with a 
framework in which geometrical objects are associated with mathematical quan-
tities from the start, Euclid deliberately works in a sparser framework in which 
the science of comparing lengths, angles and areas both needs to be and can 
be grounded. In fact, I will argue that there is a straightforward way in which 
Euclid’s five postulates may be seen as grounding such a science of comparisons, 
and that this leads to an interpretation of Euclid’s postulates as something like 
conditions for the possibility of comparison of lengths, angles and areas. In this 
way, Euclid’s postulates, while not ‘self-evident’ (or ever intended to be), are 

4. The claim that in The Elements two figures have the same area in case one can be decom-
posed and re-assembled into the other is, while not entirely untrue, nevertheless perhaps an 
over-simplification. Often, Euclid shows that two figures A and B have equal areas by showing 
that for some other figure C disjoint from A and B,  the larger figure A ��C  can be decomposed and 
re-assembled in to B ��C. Additional problems and questions about the nature of areas are also 
raised by the later books of the Elements. However, the topic of the concept of area as it appears in 
The Elements, well deserving of a treatment all its own, is not our main concern and so we do not 
pursue these matters further here.

5. The general point being made here is similar to one of the main points of Seidenberg 
(1978).
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nevertheless epistemologically privileged as conditions for the possibility of a 
type of science of measurement.6

Quite remarkably, Euclid (and perhaps his contemporaries) also notice  
that such a science of measurement, appropriately grounded, enables us 
not only to make specific claims about the equality or inequality of specific 
lengths, angles or areas, but also general claims about more general geometrical  
configurations—what I will call ‘general measurements’. While measurements 
of specific lengths, angles or areas can be done with traditional measuring instru-
ments, general measurements are performed via proofs. For Euclid and his con-
temporaries then, proof then turns out to be first and foremost a way of making 
such general measurements, as opposed to a device for producing some sort of 
certainty about facts that are perhaps already known. This paper will largely be 
devoted to elaborating and arguing for the plausibility of this set of claims.

I will flesh out most of the details of this in §2 and §3. In §2 I will focus on 
techniques for comparing specific lengths, areas and angles—something that 
is not really the main subject of The Elements, though is intimately connected 
with it—and will show that the Euclid’s postulates may be seen as grounding 
such techniques in fairly straightforward ways. In §3 I will then turn to the use 
of these techniques in performing ‘general measurements’, which is indeed the 
core subject matter of The Elements (or so I shall argue). In §4 I will consider the 
question of what this tells us about Euclid’s broader conception of mathematics.

As a result of this investigation, we gain a richer understanding of the tech-
niques of Greek mathematics and the motivations behind it. In addition, we gain 
a better understanding of the origin of proof—why, after all, did Greek mathe-
maticians care to start proving things? What need was satisfied by mathematical 
proof? We will be in a much better position to address these questions using the 
results of the present investigations.

2. Comparing the Specific

In this section, we shall focus on the question of how a geometer can compare 
a pair of lengths, angles or areas that have in some way been given and phys-
ically lie before him. This will give us some insight into the status of Euclid’s 
postulates, as we will see in §2.5. A more complete understanding of the status 

6. There is a further question as to whether Greek views on incommensurables also con-
tributed to the rejection of an a priori identification of lengths, angles, and areas with numbers. 
A discussion of the views of ancient Greek mathematicians on incommensurables unfortunately 
lies outside the scope of this paper. It will suffice to note, however, that it is possible for the rejec-
tion of an a priori identification of geometrical magnitudes with numbers to have multiple causes.
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of Euclid’s postulates that builds on this and more fully addresses the questions 
posed in the previous section will have to wait until §3 and §4.

2.1. The Comparison of Lengths

In Euclid’s definitions, postulates, and common notions, there is no suggestion 
that there there is anything intrinsic about line segments (or angles or areas) that 
allows us to immediately compare them, and say that one is greater than, equal 
to, or less than another in magnitude. How then over the course of The Elements 
do we end up being able to make these sorts of comparisons?

Let us begin by focusing on the case of line segments. How would a Euclid-
ean geometer decide of two physical line segments before him which is  longer, 
or whether they are equal in length? Nowhere in The Elements does Euclid spe-
cifically pose the problem ‘to decide of two lengths which is the greater, or 
whether they are the same.’ Nevertheless, techniques for making such compar-
isons emerge very early in The Elements, and are used repeatedly throughout 
the text.

When asked how we can compare the lengths of two line segments, perhaps 
the most natural response is that we can bring a ruler to one of the line segments, 
mark it, bring the marked ruler to the other line segment, and simply see which 
(if either) is the greater. A variant of this idea that does not involve marking 
involves bringing a (non-collapsible) compass to the first segment in such a way 
that its legs fall on the extremities of the interval, then bringing the compass to 
the second line segment and doing a comparison. Although there is in a sense 
nothing wrong with these sorts of solutions, we will first consider a different 
style of solution that will turn out to be more useful to Euclid, in a sense we will 
be able to articulate only later in §4.

Consider then the problem of comparing the lengths of two line segments 
by a traditional straightedge and (collapsible) compass construction. Given only 
such resources, and given two line segments AB and CD, how can we decide 
whether the length of AB is equal to the length of CD, and if their lengths are 
unequal, which is longer?

B

A

C

D

Begin by constructing a point E such that BE and CE are equal in length. This is 
most easily done by drawing a circle with center B and radius BC, a circle with 
center C and radius CB, and letting E be one of the intersection points of these 
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two circles. These circles have equal radii. Because EB and EC are also radii of 
these circles, it follows that EB and EC are equal in length.

B

A

C

D
E

As shown below, we then then draw a circle with center B and radius BA, 
and extend the line segment EB until it meets this circle, calling this point of 
intersection A ’. Then BA ’ is also a radius of this circle, and so equal in length to 
BA. Similarly, we draw a circle with center C and radius CD , and extend the line 
segment EC until it meets the circle, calling this point of intersection D ’. Likewise, 
CD and CD ’ are equal in length. Using this and the fact that EB and EC are equal 
in length, It follows that AB is equal to (or respectively longer or shorter than) CD 
in length iff A E’  is equal to (or respectively longer or shorter than) D E’  in length.7

B

A

C

D
E

A′

D′

We have therefore reduced our problem to one of determining the relation-
ship between the lengths of two line segments A E’ , D E’  that share an endpoint E.  
This later problem is trivial. Simply draw a circle with center E and radius EA ’.  
If D ’ lies inside the circle, then D E’  is shorter than A E’ , if D ’ lies outside the cir-
cle, then D E’  is longer than A ’E, and if D ’ lies on the circle, then D E’  is equal in 
length to A E’ .

E

A′

D′

7. The reasoning here relies on Euclid’s common notions.
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In this way, we can determine the relationship between the lengths of AB  and 
CD  with a traditional straightedge and (collapsible) compass construction.

The reader will surely have noted that what has just been described is 
essentially the mathematical content of Book I, Propositions 1 through 3 of The 
 Elements. That is to say, the very first thing Euclid does in The Elements is to 
present us with a technique for comparing the length of spatially distinct line 
segments. It is not merely out of love of equilateral triangles that the very first 
argument in the Elements shows us how to construct the equilateral triangle EBC 
given above; it is rather to set the stage for the algorithm just given.

Note also that the algorithm just given relies on nothing more than the  ability 
to connect points (such as B and C) with a line segment, to extend line segments 
arbitrarily, and to draw circles around a given point with a given radius. That 
is to say, the algorithm given above uses nothing but Euclid’s Postulates 1 
through 3. These facts about the existence of lines and circles are what ground 
the possibility of comparing lengths in the manner described. In fact, my claim 
is that the primary function of the postulates in The Elements is just to ground 
ways of comparing quantities of various kinds in various contexts in precisely 
this sort of way. (These comparisons will be not just between lengths, but also 
between angles and areas.) Spelling this argument out fully will occupy the next 
several sections.

2.2. The Comparison of Angles – I

Let us turn to the question of how we can compare the magnitudes of angles. 
Specifically, given two angles ABC and DEF, how are we to compare them?

A

B

C
D

E

F

We consider two methods for angle comparison—one very general, and the other 
a method that works only for specific sorts of geometric configurations. The 
first method piggybacks on our method for comparing lengths—specifically, it 
reduces the problem of comparing angles to the problem of comparing lengths.

To spell out this method, we begin with an arbitrary line segment I. Along 
the lines segments BA, BC, ED and EF we cut off line segments equal in length 
to I, producing line segments BA', BC', ED' and EF' all equal in length to I. (We 
extend the line segments AB, BC, DE and EF if necessary to do this.)
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A

B

C
D

E

F
I

A′ C′ D′ F′

The lengths of A'C' and D'F' can then be taken as measures of the sizes of the 
angles ABC and DEF. In particular, the angle ABC is less than, equal to or greater 
than the angle DEF iff the line segment A'C' is less than, equal to or greater than 
the line segment D'F' in length.8

The process of cutting off line segments equal in length to I may be done 
by adapting the technique presented earlier for comparing the length of line 
segments; this is spelt out explicitly in Book I, Proposition 3 of The Elements. The 
comparison of the line segments A'C' and D'F' may also be done using the tech-
nique presented in the previous section.

This method for comparing angles is of great importance to Euclid. In partic-
ular, in Book I Proposition 23, its main idea is used to solve the problem of con-
structing on a given line and a given point on that line an angle equal to another 
given angle. This construction is then used repeatedly in the subsequent books 
of The Elements.

Interestingly, Euclid does not use this method for comparing angles to define 
equality of angles. Instead in Book I, Propositions 24 and 25 he justifies this pro-
cedure for the comparison of angles in terms of his postulates. While the pro-
cedure in question can be carried out using the constructive tools given only 
in Postulates 1 through 3, justifying the claim that the procedure does what we 
have claimed it does turns out to rely on Postulates 1 through 3 along with the 
so-called method of superposition, to be discussed shortly. It does not, however, 
rely on Postulates 4 or 5.

2.3. The Comparison of Angles – II

While this algorithm gives us a useful way of comparing angles, it is important 
to realize that it is not the only method for the comparison of angles that Euclid 
uses. There is no particular reason why Euclid should restrict himself to only 
one method for comparing angles, and in fact it turns out that a quite different 
approach to the comparison of angles also turns out to be useful for dealing with 
a large class of problems in The Elements. We turn to this now.

8. This is only intended to be a way of comparing angles not greater than 180° in magnitude.
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Suppose we have parallel lines A and B with a line C (a transversal) crossing 
both.9 Suppose the transversal C makes an angle α with the line A, and an angle 
β  with the line B as shown.

A

B

C

α

β

In this case, we know that � �� . That ‘corresponding angles’ formed by a 
transversal cutting parallel lines are equal is perhaps the most fundamental fact 
about the relationship between angles formed with parallel lines, and provides 
us with another technique for comparing angles. This equality between angles 
is central to much of the work of The Elements. It plays an indispensable role in 
the argument that the sum of the angles of a triangle form two right angles, and 
much of the theory of triangles and parallelograms in general depends critically 
on it.

I claim that we may view the equality of corresponding angles as a tool for 
the comparison of angles in the special case in which these angles are formed 
by a transversal cutting a pair of parallel lines. It is of course primarily in the 
context of Euclidean geometry that it makes sense to think of this as a technique 
for the comparison of angles. In a geometry in which there are multiple lines B  
and B' parallel to a given line A, it will not make sense to take corresponding 
angles to be equal in magnitude. Such an assumption would require us to say, 
for instance, that the angles β  and β ’ are equal in the situation depicted below in 
which B and B' are distinct parallels to A:

A

B

C

B′

α

β β′

The main problem is of course that angle β  is a proper part of the angle β ’.  
That nothing can be equal in magnitude to a proper part of itself is a type of 

9. By a line parallel to a given line we mean a line which, regardless how far it is extended, 
does not meet the given line.
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reasoning that Euclid uses repeatedly throughout The Elements, and is captured 
in Common Notion 5, according to which ‘the whole is greater than the part.’ 
Thus, the magnitudes angles β  and β ’ cannot be identified. So for this technique 
for the comparison of angles to work, it must be the case that if there is a line 
parallel to a given line through a given point, it is unique. Now, in geometries 
such as spherical geometry in which parallel lines do not exist, the technique 
of angle comparison in question will be vacuous, because parallel lines do not 
exist. Thus, the most natural context in which to consider the technique of angle 
comparison in question is that of Euclidean geometry.

Of course, Euclid does not simply assume the equality of corresponding 
angles produced by a transversal cutting parallel lines, but instead argues for 
it explicitly in Proposition 29 of Book I. Given what has been said thus far, one 
might expect this argument to depend on the Parallel Postulate (Postulate 5), 
and indeed it does.

The argument is straightforward. It begins by showing that alternate inte-
rior angles produced by a transversal cutting a pair of parallel lines are equal. 
In the diagram below, consider the angles α  and γ . Suppose they are unequal. 
Without loss of generality, suppose � � � . Consider then the angle γ ’ adjacent to 
the angle γ  as shown. By the Parallel Postulate, � �� ’  is equal in magnitude to 
the sum of two right angles. It follows that � �� ’ is less than two right angles, 
as � �� . But this is a contradiction, as γ  and γ ’ form a straight line. Thus α  and 
γ  are equal. To show that α  and β  are equal, it thus suffices to show that γ  and 
β  are equal. But that opposite angles are equal is easily shown. For example, 
both the pair of angles γ  and γ ’ and the pair of angles γ ’  and β  form two right 
angles, and so eliminating the common element γ ’ we have that β  and γ  are 
equal.

A

B

C

α

γ γ ′
β

Note that in this argument, in addition to assuming the Parallel Postulate we 
have also assumed that all straight angles are equal in magnitude. Now, Euclid 
tends to avoid using the term ‘angle’ to describe straight angles; he typically 
reserves the term ‘angle’ for what we would call an angle of size < 180. He does, 
however, consistently describe straight angles as the ‘sum of two right angles’ 
(see, for example, Book I, Propositions 13 and 14). So in Euclidean parlance, 
our assumption that all straight angles are equal in magnitude amounts to the 
claim that all right angles are equal. This assumption is of course nothing other 



66 • Kevin	Davey

Ergo • vol. 8, no. 3 • 2021

than Euclid’s Fourth Postulate.10 In this way, the specific method for comparing 
angles in question presupposes both Postulates 4 and 5.

To sum up, what all this shows is that Postulates 1 through 5 may be viewed 
as grounding a number of techniques for the comparison of angles. And so in 
much the same way that Postulates 1 through 3—that is, the existence of lines 
and circles—serve the purpose of grounding the possibility of comparisons of 
length, so too these postulates along with the postulates stating the equality of 
right angles and the existence and uniqueness of parallels serve the purpose 
of grounding various methods of angle comparison. However, the so-called 
principle of superposition must also be acknowledged as playing an important 
(though underappreciated) role here, and it is to this that we now turn.

2.4. The Principle of Superposition and the Comparison of Areas

The so-called method of superposition first appears in Book I, Proposition 4. 
Euclid supposes there that we have two triangles ABC and DEF such that the 
length of AB is equal to the length of DE, the length of AC is equal to the length 
of DF, and the angle BAC is equal to the angle EDF:

A

B C

D

E F

α α

Euclid’s goal is to prove that the length of BC is equal to the length of EF, and 
that the remaining corresponding angles are also equal.

Euclid argues that because the length of AB is equal to the length of DE,  
the length of AC is equal to that of DF, and the angle BAC is equal to the angle 
EDF, it is possible to superpose the triangle ABC on top of DEF in such a way that 
A lies on top of D, B lies on top of E, and C lies on top of F.11 If the  triangles can 

10. Concerning this postulate, note that Heath says, ‘this postulate . . . really serves as an invari-
able standard by which other (acute and obtuse) angles may be measured. . . ’ (1908: Vol. 1, 200).  
I take this to be consistent with the reading I am offering here. See also Heath (1908: Vol. 1, 201) for 
other historical examples of this way of treating Postulate 4: ‘Veronese, Ingrami, and Enriques and 
Amaldi deduce the fact that all right angles are equal from the equivalent fact that all flat angles 
are equal, which is either itself assumed as a postulate or immediately deduced from some other 
postulate.’

11. Perhaps the reasoning is that because AB and DE are equal in length, we should be able 
to slide the triangle ABC over in such a way that A is laid on top of D and B on top of E. Assuming 



	 On	Euclid	and	the	Genealogy	of	Proof • 67

Ergo • vol. 8, no. 3 • 2021

be made to coincide in this way, Euclid concludes that in fact all their remaining 
sides (and angles) must be equal.

How are we to make sense of the ‘superposing’ of one geometric object on 
top of another in this argument? It is difficult to see any straightforward sense in 
which Euclid’s postulates justify such a form of argumentation. While this form 
of argument is not used a great deal in The Elements, the propositions in whose 
proof it is used—such Book I, Proposition 4—play an indispensible role in the 
remainder of the text. The net result is that much of the purely geometrical part 
of The Elements depends in one way or another on this method of proof.

Reactions to the presence of this sort of reasoning in the Elements varies 
greatly. Russell was famously critical of the method of superposition, saying that 
‘it has no logical validity, and strikes every intelligent child as a juggle’ (1938: 
405). Others such as Wagner (1983) have been much less hostile. The work of 
Adams (1994; 2001) carefully discusses a number of historical and conceptual 
issues that arise with respect to this principle.

There are many complicated issues surrounding this principle, and it is not 
my goal to discuss them in depth here. My view is that although this principle 
is not entailed by Euclid’s postulates, it is nevertheless a reasonable principle of 
geometrical reasoning. I do not know why Euclid did not include some version 
or other of this principle as a postulate, and will not try to speculate on the mat-
ter. Instead, I confine myself to a few remarks on the character and role of this 
principle in The Elements as it bears on the issues of this paper.

One reason people like Russell have balked at Euclid’s use of the principle 
of superposition is that, insofar as it is a method that involves moving one geo-
metric object on top of another, it involves the concept of motion. But we have 
been given no postulates about motions, and Euclid proves no theorems about 
motions in the Elements. Thus the use of motion in proofs such as that of Book I, 
Proposition 4 seems conceptually out of place.

However, I do not think that there is any reason to think of the principle of 
superposition as involving any sort of motion. Rather, it is a principle which 
says, loosely speaking, that two geometrical objects which agree in sufficiently 
many respects will agree in all intrinsic respects. For example, in the case of tri-
angles, one has the following principle:

Superposition principle for triangles: Let ABC and DEF be triangles 
such that AB and DE are equal in length, AC and DF are equal in length, 

the triangles are oriented similarly, then because angles BAC and EDF are equal, D (which now 
co-incides with the newly moved A) and F should lie in the same line as the newly moved C. 
Because AC and DF are equal in length, it then follows that F and the newly moved C should in 
fact co-incide.
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and angle BAC is equal to angle EDF. Then triangles ABC and DEF agree 
in all their intrinsic geometric properties.

A principle of this sort is enough to prove Proposition 4 of Book I, as we 
can conclude from the superposition principle that, for example, BC and EF are 
equal in length. Now, the formulation of a very general principle of superposi-
tion applying to a very general class of geometrical objects is a non-trivial task, 
and so we do not attempt to formulate a fully general principle of superposition 
here. The important point is simply that whether formulated in a very general 
way or not, a principle of this sort that says that under certain conditions two 
geometric objects share all their intrinsic properties does not involve the concept 
of motion in any way.

It is worth noting that in his formulation of the postulates of geometry in 
 Hilbert (1902), Hilbert has a postulate (Postulate IV, 6) with this rough character, 
as do Avigad, Dean, and Mumma (2009) in their logical formalization of The 
Elements. So the idea that we should think of superposition in these terms rather 
than in terms of motions is not new. It is in these terms that I will think of the 
principle of superposition in what follows.

As a tool for comparing quantities in The Elements, the principle of super-
position plays two roles that we shall now discuss. First, the principle is 
explicit in the first method of comparison of angles discussed in the previous 
section. In this method, the equality or inequality of two angles ABC and DEF 
is reduced to the equality or inequality of the lengths A'C' and D'F' of the 
bases of isosceles triangles having angles ABC and DEF respectively at their 
vertices, with all other side lengths equal. This method critically depends on 
the principle of superposition—without it, we could not, for example, con-
clude that if A'C' and D'F' are equal in length, then angles ABC and DEF are 
equal in magnitude.12

Second, it may be argued that in The Elements the principle of superposition 
plays a role in the comparison of areas. Euclid’s first theorem about areas is Prop-
osition 34 of Book I, in which he argues (amongst other things) that the diameter 
of a parallelogram bisects its area. That is, given a parallelogram ABCD:

A B

C D

12. In this regard, it is worth noting that in proving Propositions 24 and 25 in  
Book I—propositions which in effect justify the method of angle comparison in question—Euclid 
relies on  propositions proved using of the principle of superposition, such as Proposition 4 of Book I.
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the areas of triangles ABC and BCD are equal. Euclid proves this by arguing that 
the respective sides and angles of triangles ABC and BCD are all equal. From this 
he concludes without further argument that the areas of these triangles must also 
be the same. But why is this step justified? If we think of the area of a triangle as 
an intrinsic geometric property of the triangle, then it seems that Euclid must be 
assuming something like the superposition principle for triangles. Without such 
an assumption, we would have no right to infer the equality of triangles ABC 
and BCD. Indeed, essentially all of Euclid’s theorems about areas in The Elements 
depend on precisely this form of argument in one way or another.

Thus, it can be argued that the principle of superposition (as thus stated) is 
the main tool for the comparison of areas in The Elements. It must immediately 
be conceded that there is something speculative about this claim. Euclid does 
not indicate when he is using the principle of superposition; in fact, he does not 
explicitly outline or reference any such principle anywhere in The Elements. The 
principle is rather one which interpreters have brought to The Elements to make 
sense of its underlying logic—especially the logic of proofs such as that given 
for Book I Proposition 4. I think that interpreters have been right to do this, 
but that they have been remiss in leaving the question of the logic of Euclid’s 
arguments for the equality of areas untouched. Insofar as there is a formulation 
of the principle of superposition which can serve both roles and could plausi-
bly have been regarded as obvious to Euclid, it makes sense to interpret the 
principle in that manner. Thus formulated, the principle of superposition may 
therefore be regarded as a prerequisite not just for certain methods of angle 
comparison, but also as a prerequisite for Euclid’s methods for the comparison 
of areas.

2.5. A Conjecture

At this point, I would like to make a conjecture about Euclid’s reason for choos-
ing his five postulates.

The science of metrology is the study of how we measure things, what sorts 
of measuring instruments may be used for what purposes, and related concerns. 
The Ancient Greeks even before Euclid were presumably in possession of such 
a science. There is no reason to think that possession of this science requires the 
co-existence of a particularly rich idea of mathematical proof. One could poten-
tially develop quite sophisticated tools for measuring areas, volumes, and angles 
without the idea that associated mathematical generalizations were capable of 
proof. One could instead develop such a set of tools and techniques proceeding 
instead with mostly empirical knowledge of the sorts of relationships that hold 
between numbers, various geometric objects, and so on.
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Even absent a rich notion of mathematical proof, one may nevertheless 
see certain principles as playing a foundational role in metrology, acting as 
the grounds on which certain fundamental techniques of measurement may 
be based. I have argued that Euclid’s postulates can be seen as such founda-
tional principles. Indeed, my conjecture is that Euclid chose his five postulates 
(and perhaps the principle of superposition should be added here) precisely 
because of their role as foundational principles in the science of metrology; that 
is to say, precisely because they are basic principles that allow one to compare 
lengths, angles and areas. Euclid of course did not explicitly give any reasons 
for choosing his postulates, and so my claim here is highly conjectural. Never-
theless, some support for this conjecture is found in the fact that, as shown in 
the  previous  sections, Euclid’s actual techniques for comparing lengths, angles 
and areas in The Elements all depend on his five postulates (and the principle of 
superposition) in very direct ways. That Euclid uses his postulates as tools to aid 
in comparisons is something we find in the text; what goes beyond the text is the 
conjecture that it is simply with this use in mind that these postulates are chosen. 
Still, the conjecture seems plausible and so I make it.

Euclid’s choice of his postulates should not be seen as the clever identifica-
tion of a set of indubitable principles to act as the axiomatic basis of geometrical 
knowledge, allowing the geometer to dispel skeptical worries about the foun-
dations of his subject. In fact, there is no reason to think that in Euclid’s time 
there was any sort of skepticism about geometric knowledge that was dispelled 
by his particular choice of postulates. Nor is there any reason to think that even 
if there were such worries, Euclid’s particular choice of postulates would have 
dispelled them. Rather, Euclid’s goal (I conjecture) was to show that beginning 
with ordinary suppositions that would have been taken for granted by any sort 
of scientist in possession of at least a primitive science of metrology, one could in 
fact prove a large set of generalizations about geometrical objects. There is more 
to be said about this last part of the story, and so it is time to turn to it; with its 
help we will be able to bring into relief not only the conjecture of this section, but 
further conjectures still.

3. Comparing the General

3.1. General Measurements

Thus far, we have been talking about measurements of particular geometrical 
objects—more specifically, judgments in which two physically given and com-
pletely determinate lengths, angles or areas are compared. Although the ability 
to make such judgments is crucial for the possibility of geometry, understanding 
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the nature of these judgments is not Euclid’s goal. Nevertheless, some reflec-
tion on the kinds of theorems that actually appear in The Elements shows that 
the conceptual distance between these sorts of measurements and the kinds 
of things with which Euclid is actually concerned is perhaps smaller than one 
might think.

Consider the fact that the sum of the angles in a triangle is 180. In Euclid’s 
language, this claim is stated as ‘the sum of the three interior angles of the tri-
angle equals two right angles’, and is part of Book I, Proposition 32. Now, the 
judgment that for some specific, physically given triangle and some specific, 
physically given straight angle (or pair of right angles) the sum of the angles in 
the former is equal to the later is the kind of thing that can be established by the 
methods of measurement discussed already. Call this a specific	measurement. In a 
specific measurement, two physically given and completely determinate objects 
are being compared in some way or another.

But establishing that the sum of the angles in a specific triangle is equal to 
some specific pair of right angles by some sort of specific measurement is not 
Euclid’s goal in Book I, Proposition 32. His concern instead lies with triangles in 
general. We interpret this sort of generality in the following way. In the case of a 
specific measurement, one is interested in a comparison between two completely 
specified, physically given, and fully determinate objects. What Euclid wants to 
do, however, is compare two geometrical objects which are only partially speci-
fied; namely, the sum of the angles in an arbitrary triangle (with any angles and 
side lengths, located anywhere in space), and an arbitrary pair of right angles. 
We do not know anything about the triangle and right angles in question other 
than that they are triangles and right angles, and in this sense they are only ‘par-
tially specified’ geometrical objects. We think of a comparison between partially 
specified geometrical objects as in effect infinitely many comparisons between 
fully specified, physically given and completely determinate geometrical objects 
compatible with the specification in question. Call this sort of comparison of 
only partially specified geometrical objects a general measurement.

There is no a priori reason to expect that general measurements should be 
possible. In some cases, a general measurement will be impossible because the 
result of the relevant comparison is simply indeterminate. For example, is an 
arbitrary angle greater than an arbitrary right angle? Here, no general answer is 
possible—it might be greater, and it might not. In such a case, there is no pos-
sibility of a general measurement insofar as we demand that general measure-
ments yield determinate results.

But even in cases in which there is a completely determinate answer to the 
question of the relationship between two partially given geometrical objects—as 
occurs, for example, when comparing the sum of the angles of a triangle with 
two right angles—it might still not be clear how exactly one is supposed to 
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measure something general—that is to say, how to do what amounts to infinitely 
many specific measurements at once. Certainly, traditional instruments of mea-
surement can offer no help. We cannot, after all, apply a straightedge or compass 
to a general triangle, but only to a particular one.

The key, however, is to note that the postulates that underlie the  possibility 
of specific measurement—i.e., Euclid’s five postulates along with the principle 
of superposition—are already claims of a general nature. It will be precisely 
because of this that general measurements turn out to be possible. Let us con-
sider some examples and see how this works.

A

BC

D
E

First consider the simple fact that when two lines cross each other, the opposite 
angles are equal. In terms of the figure above, this means that angles CEA and 
DEB are equal. This is proved in Book I, Proposition 15. The argument is sim-
ple, and we have seen it already. The sum of angles CEA and AED is two right 
angles, as is the sum of angles AED and DEB. Because all right angles are equal 
to each other, it follows that the sum of angles CEA and AED is equal to the 
sum of angles AED and DEB. Eliminating the common element AED, it follows 
(using the common notions) that angles CEA and DEB are equal.

In this case, it is the generality of the fact that all right angles are equal 
(Euclid’s Postulate 4) that allows us to compare two opposite angles in the gen-
eral case in which two lines intersect. In this way, a general measurement involv-
ing only a partially specified geometrical configuration is possible.

A B

C D

E

F

G

H

Consider next the fact that when a line crosses two parallel lines, alternate 
and corresponding angles are equal. In terms of the figure above, this means for 
example that angles AGH and GHD and CHF are all equal. This is part of the 
content of Book I, Proposition 29. The argument resembles one we have seen 
already. If angles AGH and CHF are unequal, then one is greater; suppose it is 
AGH. With a little work, one then argues that the sum of angles BGH and GHD 
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is less than two right angles. But from Euclid’s Postulate 5, it then follows that 
the lines through AB and CD meet, and so are not parallel. Thus, angles AGH 
and CHF cannot be unequal, and so are equal. Because angles GHD and CHF 
are opposite angles it follows from the previous theorem that they too are equal, 
and thus all of angles AGH, GHD and CHF are equal. In this case too, it is the 
generality of Euclid’s postulates—and in particular, the generality of Postulate 
5—that allows us to make a general comparison between angles in a geometrical 
configuration that is only partially specified.

A

B
C

D

E

Finally, we consider the fact that the sum of the angles in a triangle is equal 
to two right angles. Consider the triangle ABC given above. Extend line seg-
ment BC through C to a point D, and draw a line CE parallel to BA. Angles 
ABC and ECD are corresponding angles, and so are equal by the theorem just 
proved. Angles CAB and ACE are alternate angles, and so are also equal by the 
theorem just proved. Therefore the sum of the angles ABC, BCA and CAB is 
equal to the sum of the angles ECD, BCA and ACE, which is equal to two right 
angles.

What we have here is a more complex general measurement that builds on 
simpler general measurements to demonstrate a relationship of equality. In this 
case, it is the generality of the simpler general measurements that make possi-
ble the generality of the more complex general measurement of the sum of the 
angles of an arbitrary triangle.

In sum, the principles of specific measurement themselves already con-
tain sufficient generality to serve as the basis for general measurement. In 
this way, the gap between specific and general measurement turns out to be 
quite small; the theoretical basis of the former sufficing to ground the later. 
Recognizing this is perhaps the crowning accomplishment of Euclid and his 
contemporaries.

3.2. The Structure of The Elements

It is not just the theorems described above that may be interpreted as general 
measurements. In fact, a great number of the propositions of Books 1 through 4  
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of The Elements may be interpreted straightforwardly as general measurements—
that is, as arguments showing that in a certain partially specified geometrical 
configuration, certain lengths, angles or areas are less than, equal to, or greater 
than certain other lengths, angles or areas. For example, Pythagoras’s Theorem 
(in the way stated in Book 1 Proposition 47) may be viewed as a general mea-
surement comparing the sum of the areas of the squares on the legs of a right 
angled triangle with the area of the square on the hypotenuse.

Although many of the propositions of The Elements are straightforward geo-
metrical facts for which proofs are then given, The Elements also contains a good 
number of constructions—that is, propositions of the form ‘given such-and-such, 
to construct such-and-such’. So for example, Proposition 1 of Book 1 reads ‘to 
construct an equilateral triangle on a given finite straight line.’ In the case of 
constructions, Euclid not only gives the method for constructing the object in 
question, but also a proof that the construction does indeed do the job it is sup-
posed to do. In such cases, one even has the option of viewing the proof as a 
general measurement. So for example, in the case of Proposition 1 of Book 1, 
the claim is that when a triangle is constructed in a given way, all the sides are 
of equal length. This may be viewed as a general measurement in which the 
sides of a triangle constructed in a particular way are compared with each other. 
A great number of the constructions of Books 1 through 4 can be interpreted in 
a similar way. Of course, it might be a stretch to claim that all the theorems of 
Books 1 through 4 are naturally viewed as general measurements. For example, 
to interpret the constructibility of the general pentagon as a general measure-
ment would (perhaps) be a stretch. But this I think does not refute the idea that 
the development of increasingly sophisticated general measurements is one of 
the central goals of Books 1 through 4.

Although my main claim concerns the propositions of Books 1 through 4 of 
The Elements, a few comments on the remaining books will be helpful, at least 
to make clear what makes Books 1 through 4 distinctive. The subject of Book 5 
is the theory of proportions (or ratios); the subject matter here is more algebraic 
than geometric, and so is not our primary concern. In Book 6, however, the the-
ory of proportions is then put to use in geometry. Consider, for example:

Proposition 1, Book 6: Triangles and parallelograms which are under the 
same height are to one another as their bases.

This says, for example, that if two triangles have the same height, then the ratio 
of their areas is the same as the ratio of their bases. This is first and foremost a 
statement about equality between ratios of areas of lengths, rather than a state-
ment about equality of lengths or areas per se. Can we think of this result as a 
general measurement? The most natural way to do so is to expand our notion of 
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measurement to include not just claims about equalities or inequalities between 
lengths, angles and areas, but also claims about equalities or inequalities between 
ratios of such quantities. Taking this approach, many of the results of Book 6 may 
also be viewed as general measurements.

Books 7 through 9 of The Elements concern number theory. While some have 
suggested that Euclid is here ‘geometrizing’ number theory—that is, subsum-
ing number theory under geometry—there is very little textual or mathematical 
basis for this claim. The theorems in these books do not, for example, depend on 
Euclid’s original postulates in any non-trivial way, and in fact end up invoking 
other principles, such as that of mathematical induction. The focus of this paper 
being geometry, we do not attempt to analyse Euclid’s conception of number 
theoretic proof here.13

Book 10 concerns the theory of incommensurability. There is both a geomet-
ric and a number theoretic character to the results presented there. Neverthe-
less, the theory of commensurability is only geometric in a superficial way, as 
Euclid’s original five postulates are also rarely invoked in Book 10. Given that 
the motivation for a theory of incommensurability and the character of such 
a theory are very different from that of the more purely geometrical theory 
developed in the earlier books of The Elements, we do not attempt to subsume 
Book 10 under the way of thinking about geometric proof being developed 
here.14

In Books 11 through 13 of The Elements there is a return to more purely geo-
metrical matters, though with a focus on solid (as opposed to plane) geometry. 
There is much in these chapters that can be interpreted as a theory of general 
measurements in three dimensions. Nevertheless, there are important differences 
between the results of these books and the results of earlier books, even beyond 
the move from two to three dimensions. Consider for example the method of 
exhaustion, which is developed in Book 12 and is used to derive facts about the 
areas of circles and other figures by approximating them with polygons. This 
method invokes surprisingly sophisticated notions of convergence, and presup-
poses much more than the five postulates of Book 1. In these later books, we see 
a transition to a more sophisticated, ‘higher’ mathematics, and so the character 
of many of the proofs there differ in important ways from those of the earlier 
books of The Elements.

In sum, given our interest in the origins and nature of geometrical proof 
and the role that Euclid’s five postulates play therein, we focus on the results of 
Books 1 through 4, though much of our argument can be generalized to cover up 
through Book 6, and occasional proofs in later books.

13. For a rich discussion of Euclid’s approach to number theory, see Mueller (1981).
14. For a thorough discussion of the Greek theory of incommensurability, see Knorr (1975).
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3.3. Proofs of General Measurements

Before returning to the general questions with which we began this paper, I will 
point out a further important way in which the proofs contained in (at least) the 
first 4 books of The Elements may be interpreted as general measurements.

In the propositions of first 4 books of The Elements, a geometric object is given 
or constructed, and some relationship of equality or inequality between lengths, 
angles or areas is stated and then proved. (In the case of book 6, it is some sort 
of equality or inequality of proportions that needs to be shown, but we focus on 
the simpler case of the first 4 books.) In the process of proving the result in ques-
tion, additional lines or circles are often added to the original figure. I claim that 
these additional lines or circles always serve the purpose of allowing the kinds 
of comparisons between lengths, angles or areas discussed in §2.

It will be easiest to illustrate this by means of an example. Consider again 
the proposition that the sum of the angles of a triangle add up to 180°. We have 
already seen the diagram that accompanies the proof:

A

B
C

D

E

Here, in addition to the triangle ABC which is given, two lines are added—BC  
is extended to BD, and a line CE parallel to BA is drawn. These lines are added 
precisely in order to allow a comparison between angles BAC and ACE, and 
angles ABC and ECD, using the kind of reasoning presented in §2. This then 
allows us to compare the sum of the angles of the triangle with the straight angle 
BCD. In this way, the addition of lines to the original triangle allows us to reduce 
the comparison of the sum of the angles of the triangle with two right angles 
to the much simpler problems of the comparison of angles BAC and ACE, and 
angles ABC and ECD, which in turn can be performed using the methods of §2.

In fact, Euclid’s general proof-strategy for general measurements is to add 
lines and circles to a given geometrical configuration in such a way that a general 
measurement can be reduced to simpler general measurerements. In this way, 
general measurements can ultimately be reduced to the kind of canonical gen-
eral measurements implicit in §2. In much the same way that imposing a grid 
over an object allows us to approximately measure the dimensions of an object, 
the careful addition of lines and circles is what allows Euclid to perform general 
measurements of complex geometrical configurations.
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In the case of Euclid’s constructions—i.e., propositions in which given 
some geometrical configuration, some other geometrical configuration must be 
 constructed—typically the various circles and lines involved in the construction 
itself will be sufficient to then argue that the relevant equalities or inequalities 
hold between the lines, angles or areas constructed.

Note that in saying that Euclid reduces general measurements to the kind 
of canonical general measurements implicit in §2, I am not claiming that Euclid 
reduces general measurements to specific measurements. There are, after all, no 
specific measurements anywhere in The Elements—Euclid’s geometric claims 
are always general in nature. The point to be reminded of here is that even the 
basic postulates underlying the science of specific measurements are of a general 
nature, and can thus be applied to geometrical configurations that are not fully 
determinate. In this way, in appropriate situations the techniques for compari-
son introduced in §2 yield general measurements.

4. On The Nature of Proof In Euclid

4.1. General Reflections

At this point, the ingredients for the story I wish to tell about Euclid’s concep-
tion of mathematical proof are all in place. In fact, the story itself should already 
largely be clear. 

I begin with the assumption that the ancient Greeks not only had a wide 
range of techniques for comparing specific lengths, angles and areas, but also 
a science of specific measurement, in the sense discussed in §2.5. In particular, 
I suppose that the Greeks had some sort of understanding of the basic principles 
that make such techniques of measurement possible in the first place. These prin-
ciples, I have argued in section §2, can be grounded in Euclid’s five Postulates.

My next main conjecture is that armed with these postulates, Euclid real-
ized that not only can techniques of specific measurement be grounded, but 
also more general comparisons of lengths, angles, and areas between geometric 
objects that are only partially specified—I have called these comparisons general 
measurements. These comparisons are done not with ruler and compass or other 
instruments, but by reasoning with the basic principles of specific measurement.

It is in this transition from a science of specific measurement to a science 
of general measurement that the notion of (geometric) proof emerges. Specific 
measurements are primarily done with measuring instruments, though a genu-
ine science of specific measurement also requires some basic reasoning with the 
principles that make specific measurement possible in the first place. With gen-
eral measurement, however, measuring instruments are of no use because the 
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geometric object is never fully given. One cannot apply a straightedge or com-
pass to a general triangle; one can only apply such instruments to a completely 
determinate and given triangle. Thus, in general measurement the only tool at 
one’s disposal is reasoning with basic principles. It is not obvious that this will 
be enough; but the genius of Euclid and his contemporaries lay in recognizing 
that armed only with this much, a rich theory of general measurement is in fact 
possible.

In this way, my suggestion is that a large part of The Elements should be 
viewed as a series of increasingly sophisticated general measurements. Just as 
one can imagine an increasingly sophisticated series of specific measurements, 
beginning with measurements of ordinary objects at hand and culminating with 
the measurement of the height of a distant mountain, the circumference of the 
earth, or the distance to the moon, so too we should think of The Elements as an 
increasingly sophisticated series of general measurements starting with simple 
comparisons and culminating in such things as the comparison of the area of a 
square on the hypotenuse of a right angled triangle with the areas of the squares 
on its legs.

On this reading, one of the main motivations behind The Elements is not 
that of trying to establish geometrical knowledge with some sort of certainty, 
but rather the developing of increasingly sophisticated techniques for general 
measurement. Insofar as we think of the modern notion of mathematical proof 
as directed towards the production of certainty—perhaps certainty that given 
propositions follow from given postulates—it is not even clear that the best way 
to think of Euclid’s arguments in The Elements is as instances of proofs in the 
modern sense. Instead, it seems to me better to think of proof in much of The Ele-
ments as the tool with which we perform general measurement. Perhaps it will 
need to be conceded that in the later books of The Elements the notion of proof 
becomes more sophisticated, but we will not examine that matter here.

Let us then return to the questions with which we began the paper, though 
their answers too should largely be clear by now. Our first question was how we 
should view the status of Euclid’s postulates, and in particular, the five postu-
lates with which The Elements begins. As I have argued, these are basic principles 
that ground our ordinary techniques for specific measurement. In this capacity, 
they are not supposed to be self-evident, or even the ‘most familiar’ of prin-
ciples. They are rather something like conditions for the possibility of specific 
measurement in the ordinary way in which specific measurements are actually 
performed.

The next question we posed was why Euclid did not treat lengths, angles and 
areas as intrinsically associated with real numbers. My answer is that to associ-
ate real numbers with lengths, angles and areas is to presuppose that it makes 
sense to talk about one length, angle, or area as having a definite mathematical 
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relationship to another length, angle or area (such as being equal to, less than, 
greater than, twice as large as, and so on.) It is part of the job of a science of 
measurement, however, to justify the claim that such relationships hold in any 
specific or general setting. As a textbook in the science of measurement, Euclid 
therefore deliberately refrains from supposing that lengths, angles and areas can 
be intrinsically measured, instead showing how such comparisons are possible 
in the first place. Of course, having shown how lengths, angles and areas can 
be individually compared does not get one all the way to associating such mag-
nitudes with numbers. But it is a necessary step along the way. A more modern 
account of the notion of real number—one that perhaps tackles the problems of 
incommesurables—is necessary to close the gap. But that does not contradict 
the fact that it is out of a need to justify the association of numbers with physical 
magnitudes that Euclid refrains from doing so. It is therefore not because of a 
lack of imagination or lack of mathematical technique that Euclid presents his 
material the way he does, but rather because of the very character of the project 
in which The Elements is engaged.

4.2. Two Remarks

Although my main argument is complete, a final pair of more tangential remarks 
will also shed some further light on the issues just raised.

First, it is sometimes suggested that the purely geometrical books of the 
The Elements should be viewed as textbooks in the art of ruler and (collaps-
ible)  compass constructions. It is often said that ruler and collapsible compass 
 constructions played a special role in Greek mathematical culture, and that The 
Elements is a systematic exploration of what can be done with these tools.15 It is 
sometimes even suggested that ruler and compass constructions were regarded 
as the most pure of geometric constructions, or perhaps even had a special 
 religious significance (Seidenberg 1962), and that it was because of this that 

15. One finds this idea, for example in Mueller (1981: 16):

The demonstration that a whole series of constructions can be carried out with straight-
edge and compass is clearly one of the purposes of the early books of the Elements. Why 
Euclid chose precisely these means does not seem to be directly ascertainable.

However, one also finds voices of dissent. For example, see Heath (1908: Vol. 1, 124):

There is of course no foundation for the idea, which has found its way into many text-
books, that “the object of the postulates is to declare that the only instruments the use of 
which is permitted in geometry are the rule and compass.”
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Greek mathematicians were especially concerned with what could and could 
not be done with such tools.

There is however very little textual support for the idea that the Greeks 
around the time of Euclid thought there was something antecedently special 
about ruler and compass constructions, and that The Elements was some sort of 
expression of this fact. Euclid certainly does not mention any such thing explic-
itly. Plato mentions the beauty of ruler and compass constructions in the Phile-
bus, (e.g., 51c, 56c), but other than that there is no mention of ruler and compass 
constructions in his entire corpus, and what we find here in the Philebus is surely 
not enough on which to base a case for this sort of interpretation of The Elements. 
Nor do we find any such support in Aristotle, or in any text roughly contempo-
raneous with Euclid.16 Moreover, the use of other tools (such as a marked ruler) 
in the works of Pappus, Appolonius and Archimedes does not seem to have 
caused any concern that has been recorded.17 Indeed is not until significantly 
later in antiquity that one finds sustained and fully explicit discussions of ruler 
and compass constructions. While the mathematicians of antiquity seemed to 
have preferred ruler and compass constructions when available, nothing more 
can be inferred from this than a preference for mathematical simplicity.

My suggestion then is that we view The Elements first and foremost as a text 
in the science of general measurements. Now, insofar as all the constructions in 
The Elements can be done with ruler and compass, there is a sense in which the 
The Elements shows us that there is something special about ruler and compass 
constructions. After all, we have seen in §2 that ruler and compass constructions 
suffice for the comparison of any two specific lines or angles. That ruler and 
compass constructions play a special role in the theory of measurement does 
not entail, however, that it is out of a desire to understand how much can be 
done with ruler and compass that The Elements was written. To the contrary, my 
conjecture is that it is out of a desire to understand the possible range of general 
measurements that The Elements was written, and that ruler and compass just so 
happen to be sufficient to do everything contained therein.

The second more tangential remark I wish to make concerns the comparison 
of line segments, and is an issue raised in §2 whose discussion I have deferred 
until now. Perhaps the most natural method for comparing line segments would 
be to bring a ruler to one line segment, mark the ends, then bring the ruler to the 
other line segment and simply compare them. This is what elementary school 
students are taught to do. Any science of measurement would surely need to 
include methods of this sort. Yet Euclid opts to base his general measurements 

16. The availability of searchable versions of a large number of texts of antiquity makes it 
relatively easy to establish this.

17. For a mathematical and historical discussion of the marked ruler, see Martin (1998: Ch. 9).
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on more complicated ways of comparing line segments, such as the straightedge 
and compass method outlined in §2. Why does he do this, and what are we to 
make of it?

It is certainly possible to theorize abstractly about the elementary school 
method of line comparison just described and build a theory of general measure-
ment around it. Perhaps the most well known approach in this rough direction is 
that of Klein (1893). Klein took the notion of a symmetry (or rigid transformation) 
of space as fundamental. Klein then used the (continuous) group of symmetries 
of that space as a way of defining congruence of geometrical objects, by saying 
that two objects are congruent iff there is a rigid transformation taking one to 
the other. Using this basic idea, Klein then reduced the study of the geometry of 
space to a study of the properties of the group of symmetries of that space. If we 
think of the dragging of a ruler through space as just a continuous sequence of 
rigid transformations, Klein’s way of doing geometry can be thought of as based 
on the principles underlying a set of methods of specific measurement, where 
these methods of specific measurement now include the elementary school 
method of line comparison (perhaps amongst other methods). Although much 
can be said about the details of Klein’s approach, this broad outline will suffice 
for now.

What the work of Klein reinforces is that when someone like Euclid or Klein 
grounds geometry on the principles underlying various methods of specific 
measurement, there is no attempt to incorporate the principles underlying every 
possible method of measurement. Instead, a choice is being made as to which 
methods of measurement to interrogate. Some of these choices will be more 
fruitful than others. For Euclid, Klein’s choice was not an option, requiring as it 
does relatively complicated mathematics, even in the simplest case. Part of the 
genius of Euclid and his contemporaries lay in choosing a set of techniques of 
specific measurement whose underlying principles could be used to generate a 
rich theory of geometry using only fairly elementary argumentation. This aspect 
of their mathematical genius has, I think, been underappreciated.
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