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of forward-looking content without losing the thread in speculative and impre-
cise interpretations of the newer models.

A predictive autoencoder is a multi-layer neural network for which input 
and output layers are connected to the same stimulus input stream (Fig. 3). 
Briefly, the GM model construes the hippocampal region as learning to pre-
dict the future state of late-stage, highly-processed, multi-modal stimulus input 
streaming in from the entorhinal cortex, where the evidence on which the pre-
dictions are based is the previous state of that same input stream. Output errors 
are calculated by computing the distance between the predicted and actual stim-
ulus input and backpropagated to earlier layers to train the network to mini-
mize the likelihood of making similar errors in the future. (Readers concerned 
with generic heyday arguments against attributing representations to or typing 
vehicles in such networks are directed to Shea 2007b, which ties together earlier 
works on this topic, including P. S. Churchland & Sejnowski 1990; Rupert 2001; 
and Tiffany, 1999.) Many more layers can be added to such a network to increase 
the degree of compression and hierarchical organization in the network’s repre-
sentations, and indeed the current boom in deep learning was inspired in part by 
work on deep autoencoders (Hinton & Salakhutdinov 2006).

Figure 3. Gluck and Myers’s (1993; 2001) cortico-hippocampal model of configural 
learning. The US is some unconditioned stimulus (like food), which given its natural 
connection to unconditioned responses (such as consummatory movements), provides 
the network with initial behavioral potency. The network’s representations can also be 
made context-sensitive through the use of contextual input/output nodes, understood as 
unitized configurations of stimuli that reliably identify distinct contexts.
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To tie to our earlier discussions, these inputs can be thought of as more basic 
structures that already possess simpler Tier 1 or 2 contents; now, it is a configu-
ration of features that a representational vehicle’s inputs jointly indicate (which 
I continue to refer to as ‘F’, keeping in mind that ‘F’ can now also refer to a con-
figuration of proximal indicated stimulus features <f1, f2 . . . fn> rather than just a 
single one). The inputs to the GM system are not coming directly from the world 
or the sensory organs, but rather from cortical structures that have already been 
shaped by selective forces to process information about environmental stimuli, 
whether by evolution, development, or more basic forms of associative learning. 
The GM network then assembles these Tier 1–2 indicators into configural clus-
ters that can more flexibly predict the future state of that same stimulus input 
stream. The clusters are revised when they fail to predict the future state of the 
same indicator-style input stream. Because revision occurs iteratively and dis-
covering the most predictive clusters can take an indefinite amount of time, it 
is in part the informational structure of the organism’s environment (and the 
organism’s active engagement with it) that determines which stimulus patterns 
will be presented to the network often enough to produce systematic revision. 
This is why Tier-3 contents cannot be reduced to concatenations of their Tier 
1–2 components (i.e., F); the interaction between the current structure of a rep-
resentational cluster and the informational distribution of the environment 
determines how and when revision will reliably occur, and which revisions will 
remain stable in the face of future exploration and engagement.

Gluck and Myers describe the revision of this network as striking a balance 
between two biases, predictive differentiation and redundancy compression. 
On the one hand, the drive to correctly predict stimulus patterns at the output 
layer creates a pressure to differentiate stimulus patterns which predict dif-
ferent outcomes, by altering link weights to render their hidden layer activa-
tion patterns more distinct.10 On the other hand, there are fewer hidden layer 
nodes than input or output nodes, so the system cannot just memorize every 
statistical regularity in its environment; it must economize on representational 
resources by treating input stimulus patterns which redundantly predict the 
same outcomes as being the same, by rendering their hidden-layer activation 
patterns more similar. The balance between these two pressures (which will be 
elaborated further in the next section) enables a powerful form of all-purpose 
inductive learning, which over time will tend to discover an efficient set of stim-
ulus configurations that predict the widest range of stimulus variance in the 
organism’s environment.11

10. The GM model uses error backpropagation learning algorithm to accomplish this; for 
more discussion of this choice, see Buckner and Garson (2018).

11. Notably, redundancy compression is the drive which helps to prevent overfitting, a 
problem facing most machine learning methods. Good generalization performance depends 
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The learning of such a network can be thought to perform a search for a set of 
feature-clusters that correspond to attractor basins in multi-dimensional feature 
space. Attractor basins here mark configurations of input stimuli that indicate 
clusters of features in the system’s environment that tend to reliably co-occur 
with one another, the joint tracking of which minimizes net prediction error; 
call the environmental property corresponding to the attractor basin closest to 
a cluster’s current location in state space ‘F+’. In most cases relevant to simple 
animals, these minima indicate their environments’ natural kinds, because these 
will be the stable sources of feature clustering that could be reliably predicted 
(Boyd 1991). Once a representation’s activation vector brings it sufficiently close 
to one of these attractor basins, it becomes overwhelmingly likely that if that 
representation is further revised (in the sense that learning alters the set of prox-
imal features F that token it), it will be revised to better indicate F+, which will in 
turn reduce prediction errors and correspondingly future revisions. By contrast, 
a revision that took the representation further away from its nearest basin would 
tend to increase prediction error, leading to increased revisions and increased 
instability.

The upshot is that we cannot rely solely on a configuration’s current or past 
informational relations to identify its Tier 3 contents, since these relations will 
always be in flux as the contents of the cluster are continuously revised. This 
provides an overarching reason why scientists should favor forward-looking 
rather than backward-looking attributions for representations which are subject 
to revision by prediction-error-reduction mechanisms: to hit a moving target, 
we should aim where those relations are headed, rather than where they cur-
rently are or have previously been. Informally, a representation’s forward-look-
ing content (F+) in some environment is thus what it indicates at the limit of its 
likeliest revision trajectory, given that environment’s informational structure.12 
More precisely:

upon networks seeking out deeper, more inductively-potent regularities, and redundancy com-
pression’s drive to economize on representational resources enforces this drive at the level of the 
mechanism.

12. It may help to more precisely define the notion of a revision trajectory. Theories of con-
tent can type representations in at least three different ways—by vehicle, mode of presentation, 
and content—and how a revision trajectory is formally defined will vary depending on how these 
distinctions are cashed out in a particular model. On the framework suggested here for the GM 
network, vehicles are clusters of hidden layer activation patterns (Gärdenfors 2004; Shea 2007b), 
modes of presentation are the configurations of proximal stimuli those clusters currently indi-
cate (if one bristles at the Fregean baggage of “mode of presentation” here, one could substitute 
“intension”, or “stereotype” instead—Putnam 1975), and content (on the here-proffered, Tier 3 
forward-looking theory) is the property indicated by the nearest attractor basin that the vehicle is 
overwhelming likely to be revised to better indicate, if it is revised at all. A revision, in this sense, 
occurs when a change is made to a hidden-layer activation pattern cluster as a result of a detected 
prediction error (e.g., by increasing or decreasing the influence of one of its feature components), 
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Forward-looking content: The (Tier 3) content of a representation N currently 
indicating feature configuration F in environment E is whatever property F+ 
that (properly functioning) error-correction learning makes systematically 
likely it will be revised to better indicate in E, if it is revised at all.13

This forward-looking view jointly satisfies the causal and normative aspects 
of content attributions. Notably, the detection of misrepresentation, in the form 
of prediction failure, now does something crucial in the cognitive architecture: 
it causally shapes how these configurations are revised by the cognitive system 
over time. The system actively monitors the predictive success of its represen-
tational scheme and responds by altering that scheme when it fails to correctly 
predict important outcomes. Moreover, the trajectory of these revisions is deter-
mined by the way the system treats these configurations as representational pre-
diction tools, because they are revised only when they misrepresent in this way. 
This is true because, by hypothesis, if the organism’s representations currently 
indicated their (forward-looking) contents, their referents and associated features 
would be present in the stimulus input stream, and there would be no predic-
tion error. Moreover, I have not abstracted away unduly from the actual causal 
structure of the system in ascribing these more ambitious contents, because the 
representational attributions which outstrip the agent’s current discriminative 
abilities are grounded in forms of information processing that these creatures 
can actually perform. A fully naturalizable, empirically-supported story can be 
told about how evidence of misrepresentation is detected through prediction 

but the vehicle remains locked into the same revision trajectory (i.e., its likeliest course through 
feature space after predictable future revisions terminates in the same attractor basin). Sameness of 
vehicle across revision is determined by closest activation vector cluster in feature space between 
time t (before revision) and t+1 (after revision); typically each cluster will have only one nearby 
counterpart after revision. A revision trajectory for some representation is thus defined as a unified 
series of predictable, systematic revisions, across which the mixture of proximal features indicated 
by a hidden-layer activation pattern cluster is continually tweaked to better indicate the same dis-
tal property indicated by a stable attractor in feature space.

13. A reviewer worries about the final clause here, specifically that given the “cobbled-to-
gether, kludge-y nature” of cognition, that perhaps nearby backward-looking views that focus 
on the best explanation for prior stabilization (such as Ryder 2004 or Shea 2018) may have an 
advantage here. I dig in my heels on this point; I do not think it appropriate to ascribe contents 
that outstrip even an agent’s future discriminative abilities in cognitive science (thus agreeing with 
arguments offered by Neander 2006 to this effect), for this would prevent us from offering the pro-
posed empirical resolution to the ascriptive disagreements in comparative psychology highlighted 
in Sections 3 and 5 here. If there are agents that are constitutionally incapable of improving the reli-
ability of their representational strategies even when presented with robust evidence of misrepre-
sentation, then we should not ascribe more ambitious contents than their best-case discriminations 
can support. The benefit of digging in one’s heels here is that the value of Tier 3 content ascriptions 
can still be justified in terms of benefits offered to the theorist’s ability to predict the behavior of 
the representation’s owner; the scope of the prediction targets just needs to be expanded to include 
responses to evidence of misrepresentation and future behaviors as well.
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error, and how representations are revised to better indicate their forward- 
looking contents as a result.

Two quick and obvious objections are worth confronting at the outset, 
because they are based on tempting misunderstandings of these claims: the 
charges of circularity and backwards causation. First, readers may worry here 
that taking a representation’s forward-looking content to be determined by the 
likeliest limit of prediction-error learning, together with the assertion that pre-
diction error is a form of misrepresentation wherein a representation fails to 
successfully indicate its forward-looking content, leads to a vicious circularity 
or regress. This worry would be sound if the prediction-error signals were cal-
culated individually for each representation, that is, if the system were learn-
ing by supervised methods wherein an external oracle specified for each trial 
whether the correct forward-looking contents of any tokened representations 
were actually present. Lacking an independent account of how the supervisory 
oracle knew the identity of the forward-looking contents for each representation, 
I should indeed be stuck in vicious circularity or regress. Secondly and relatedly, 
the proposed theory would also seem to require a suspicious form of backwards 
causation: contents whose causal relations are only fully realized after revisions 
that may occur in the distant future would seem to be involved in computing 
error signals in the here-and-now. Either of these objections, should they strike 
home, would admittedly be fatal to the proposed view.

But crucially, the objections of the previous paragraph are based on a mis-
understanding of how such systems detect misrepresentation. Prediction errors 
are assessed not by comparing present predictions to the final outcome of some 
series of actual future revisions in some specific future timeline; rather, misrep-
resentation is assessed at each step using the agent’s current Tier 1–2 perceptual 
inputs and current predictions. In other words, after each individual prediction, 
error is detected by the system not through clairvoyance, but rather by checking 
the presence or absence of the Tier 1–2 contents predictively associated with 
that representation by previous learning. For example, it is not as though the 
system tokens duck in the presence of a plastic decoy, and an oracle, which has 
supernormal access to the future, tells the system, “Sorry, according to my cal-
culations that representation was headed to duck, and there’s no duck here; try 
again!” It is rather that the system tokens duck, and as result of prior learning, 
predicts that incoming sensory information will also contain (Tier 1–2 features 
associated with its mode of presentation or intension) quacking, feathers, floats on 
water, and so on, which have already been associated with duck through prior 
learning.14 When the system fails to observe some of these expected stimuli, it 

14. It may be worth noting that the representations on this view thus may become more like 
structural representations than indicator representations over time; though I will not explore this 
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will realize that it has gotten something wrong, and must make a revision (per-
haps it increases the weight of more valid features like quacking, relative to the 
other features which are present in decoys). Crucially, this error calculation does 
not require or provide information about where the representation is headed 
in the future, or how exactly it should be revised. The system must discover 
the stable solutions itself through trial-and-error, and only revisions that reduce 
prediction error will tend to be retained over time. This explains how Tier-3 rep-
resentations are bootstrapped from simpler Tier 1–2 components without circu-
larity or backwards causation.

Upon appreciating that the computation of prediction error is imperfect, 
a third worry might arise: that reducing content to prediction-error correction 
makes content normatively arbitrary, because any revision that happens to be 
made as a result of prediction error becomes ipso facto correct. This worry, how-
ever, is also based on a misunderstanding. Granted, any particular revision, just 
like any particular tokening, can of course be mistaken. While the proposed 
view does hold that every time there is a prediction failure, the system receives 
evidence that it made a representational mistake, it does not hold that any revi-
sion that happens to be made as a result of this error signal ipso facto renders 
the representation’s use more correct (see also Wilson 1982). Because incorrect 
revisions will generate more prediction errors, a properly-functioning error-cor-
rection system will tend to stabilize on more correct use. It does so again without 
any oracular knowledge as to optimally correct use or when it has ultimately 
reached it. Correct use is instead determined by the likeliest revision trajectory 
achieving a stable reduction of prediction error, and again which solutions are 
ultimately stable for some representation is determined by ongoing interaction 
with the informational structure of its environment, rather than the moment-by-
moment fluctuations of its learning mechanisms. This is why systems can pos-
sess forward-looking contents before learning completes (and even if learning 
never definitively finishes). Learning must instead only progress to the point 
where a representational cluster crosses the threshold of influence of a nearby 
stable attractor basin, by having enough appropriate Tier 1–2 features associated 
with it to “point it in the right direction”.

I have thus dealt with some of the most obvious objections to this kind of for-
ward-looking view, though there remain many details in need of explication. In 
particular, I could clarify the sense of “indication” that applies at the end of these 
revision trajectories. Fortunately, the forward-looking gambit works almost 
however we come down on these issues; I  could perhaps set aside Dretske’s 
much-criticized requirement of perfect correlation (i.e., P(F|N) = 1—see Slater 

point further here since the upshot of recent literature on this topic is that this distinction is one of 
degree and not of kind—see Morgan (2014), Nirshberg and Shapiro (2021)
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1994) and endorse one of the more recent informational criteria of Rupert (1999), 
Usher (2001), Eliasmith (2005), or Scarantino (2015), which can ascribe plausible 
contents with less stringent measures even at the limit of a revision trajectory. 
The differences between these views become less pressing once the range of eli-
gible contents has been winnowed to stable attractors, and learning has honed 
informational contact to the limit of its ability.

5. Explanations and Examples

It may help to illustrate the theory’s implications by returning to some of the 
themes from Section 2 and 3, and by showing how the view would tackle some 
familiar and novel cases. To review, I have now provided a theory of content 
for Tier 3 configurations. A sufficiently sophisticated predictive learning system 
can bootstrap Tier 3 representational content from Tier 1–2 indicators by flexibly 
reconfiguring those representations in response to evidence of prediction error. 
Prediction-learning systems continually monitor the fit between their associated 
predictions and ongoing observations, and revise these structures where there 
is a mismatch. Moreover, on the theory provided here, these Tier 3 representa-
tions have contents that outstrip the sum of their Tier 1–2 components; the con-
tents are forward-looking, because the terminus of a learning trajectory cannot 
be reduced to a mere concatenation of its Tier 1–2 components, which will be 
undergoing constant revision. Any stability to be found in this learning process 
is rather determined in part by the locations of the attractor basins that would 
minimize prediction error after likely future revisions.

To illustrate the implications of this view, let us compare two different 
types of cognitive systems, starting with the classic “disjunction problem” 
example of the frog whose tongue darts out in the presence of flies and bee-
bees. Does the neural structure which controls these tongue-darting move-
ments have the ambitious content fly, a disjunctive content like fly ∨ beebees, 
or some modest conjunction of proximal stimuli like small, dark, moving speck? 
Suppose that the frogs, as Neander (2006) has argued on the basis of neu-
roethological research, respond inflexibly to artificial lures like beebees, and 
further that these frogs are not capable of altering their behaviors in response 
to repeated evidence that the stimuli to which they respond are not in fact 
flies. On the theory supplied here, the frogs simply lack Tier 3 contents; the 
neural structure controlling tongue-darting movements is not under the con-
trol of a learning system which continually improves its ability to track flies. 
The same, moreover, would apply to magnetosomic bacteria and many other 
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counterexamples from the heyday literature.15 If these organisms cannot 
revise their indicator states in response to evidence of error, then they do not 
count as having Tier 3 contents at all.

Fodor drives this point home in a prescient comment on the difference 
between humans and frogs:

The relevant consideration isn’t however, just that frogs sometimes go 
for bee-bees; it’s that they are prepared to go on going for bee-bees for-
ever. Sometimes I swat at mere fly-appearances; but usually I only swat if 
there’s a fly. Sometimes Macbeth starts at mere dagger appearances; but 
most of the time he startles only if there’s a dagger. What Macbeth and 
I have in common—and what distinguishes our case from the frog’s—is 
that though he and I both make mistakes, we are both in a position to 
recover. By contrast, frogs have no way at all of telling flies from bee-
bees. (Fodor 1990: 240).16

To repurpose the point, it is a reliable fact about our more sophisticated cognitive 
architecture that if our representations are really about fly and not fly ∨ beebees, or 
really about dagger and not merely dagger-like-appearances, then were we repeat-
edly exposed to beebees or dagger-imposters and allowed to learn about the 
consequences of our mistaken reactions to them, we should have some capac-
ity to revise our representations so as to no longer respond to these misleading 
situations. Agents that systematically persist in committing the same kinds of 
errors forever should not be counted as possessing the more ambitious contents. 
In short, the forward-looking mantra is something like: fool me once, shame on 
you; fool me indefinitely, shame on my contents.

To illustrate the significance of this kind of generalization to cognitive sci-
ence, let us now consider a class of more cognitively flexible animals that share 
this capacity to revise: the chimpanzees, monkeys, and corvids that were the 
subject of interpretive stalemate in the Theory of Mind literature discussed in 
Section 3. The problem was that prior experiments were unable to determine 
whether animals ambitiously represent seeing (i.e., F+) or more modestly just the 
proximal stimuli that indicate seeing, like line-of-gaze (i.e., F). The forward-look-
ing strategy suggests a way to overcome this impasse; animals that really rep-
resent seeing should be able to recruit an open-ended variety of other non-gaze 
cues to better indicate it, flexibly generalizing predictions from old to new cues 
in a way that cannot be reduced to a fixed set of more proximal features (for a 

15. See the discussion in Dretske (1986) for a similar treatment of magnetosomic bacteria.
16. For a similar point, see Bielecka and Miłkowski (2019)—though while they simply require 

that the agent be able to detect the error, I additionally require that it be disposed to revise the 
representation to make the error less likely in the future.
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summary of the numerous proximal cues <f1,f2 . . . fn> that have been invoked by 
skeptics under the heading line-of-gaze, see Fletcher & Carruthers 2012).

6. The Causal Relevance of Forward-Looking Content

To see the distinctive power of forward-looking content in causal explanations 
of behavior, it will help to further explore the two forces of representational 
revision discussed above: predictive differentiation and redundancy compres-
sion. These forces act on cue configurations rather than the sort of elemental cue- 
behavior links characteristic of behaviorism, and they reshape those cue con-
figurations in ways that are determined by their predictive value. It will help to 
explore each force in turn, and to illustrate how backward-looking views fail to 
deliver the correct content ascriptions in cases where predictive differentiation 
or redundancy compression operate.

The more straightforward of the two revision forces is predictive differen-
tiation. William James highlighted the significance of predictive differentiation 
in shaping the mind’s representations in a famous passage where he describes 
learning to distinguish claret from Burgundy. James reports that although these 
two wines initially tasted almost identical to him, with practice he learned to 
emphasize the very slight differences amongst their taste profiles, because only 
these differences were useful in predicting their correct labels. He writes that the 
forces which revised these representations acted upon them as wholes:

The effect of practice in increasing discrimination must then, in part, be 
due to the reinforcing effect, upon an original slight difference between 
the terms, of additional differences between the diverse associates which 
they severally affect. (James 1890: 511)

He noted that the effect of these forces was to pull the two representations fur-
ther apart in perceived similarity, so that “small differences affect us as if they 
were large ones” (1890: 515). Causally, we may suppose that these forces were 
powered by the reinforcing effect of attempting to predict the correct labels, act-
ing upon cue configurations as wholes. Whenever the wine’s label is predicted 
incorrectly, whichever components of the configuration were attended to in the 
misclassification (e.g., the acidity of a claret) will tend to have its strength weak-
ened in the next revision of that configuration; and whenever the wine’s label 
is predicted correctly, the components that led to the correct classification (e.g., 
the tannic quality in a Burgundy) will tend to see their strength correspondingly 
increased relative to the other components in that configuration. The reshaping 
leads over time to more reliable classifications; though James might originally 
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have been at chance in distinguishing the two French styles of wine, with enough 
diligent drinking—in the name of science, of course—he reports eventually suc-
ceeding at the task.

Predictive differentiation is probably the most common form of predic-
tion-error-driven revision, and the easiest place to see the importance of a for-
ward-looking theory of content for a wide range of cases. The forward-looking 
view matches our intuitions about a variety of commonplace cases where pre-
dictive differentiation operates, especially concept learning in young children. 
When we took my three-year-old daughter to the zoo to see a tiger for the first 
time, like many other children her age, she exclaimed “Look at the big kitty!” 
We must here say that she lacks a representation of cat entirely (perhaps repre-
senting instead cat ∨ tiger ∨ lion ∨ dog on a dark night ∨ . . .), or that she somehow 
possesses a representation of that property even when she makes the mistake, 
despite never having had a better ability to distinguish cats from tigers earlier 
in her life. Since she possessed a great deal of experience with domestic cats, 
including features acquired from this experience such as that cats have fur, whis-
kers, a tail, and so on—features that causally explained why she made the mis-
take she did in this case—saying that she lacks a representation of cat entirely 
seems inappropriate, and leaves us unable to explain her mistake in the natural 
manner, by saying that she thought the tiger looked like a cat. And since we 
reliably predict that she will, like most other children, eventually come to distin-
guish cats from tigers upon learning of her mistake—by better attending to and 
appropriately weighing differences which initially seemed slight, as James sug-
gested—we should say that her representation means cat even when she makes 
her mistake and is still in the process of learning. It is even clearer that this is the 
correct answer when we see that the kind of mistake she makes differs only in 
degree from those that remain in even adult use (e.g., perhaps upon the first time 
we see an ocelot, fossa, or civet).17

17. A reviewer wonders whether it might be just as likely that the child’s representation gets 
revised to better indicate tiger to the exclusion of cat. Depending upon the vehicle’s current indi-
cator properties and the environment in which it would be revised, this is certainly possible; what 
matters is which revision is, as a matter of fact in that environment, overwhelmingly more likely 
to occur. Other outcomes are also possible; the representation could be poised midway between 
attractor basins corresponding to cat and tiger, and the likeliest outcome is that it gets “split” in 
two by revision, in a form of representational mitosis (perhaps this is so at age 3, but not by age 5, 
for example). It is also possible that a representation could, as a matter of fact, undergo a series of 
low-probability revisions that knock it out of the influence of one attractor basin and into another; 
this would reflect a change of content at some point in the (highly unlikely) trajectory. Rather than 
considering such questions to be problems for my view, they are gleefully endorsed as avenues 
for the research program to explore. Indeed, I think if we step away from prior intuitions about 
teleosemantics for a moment, these are the right questions to be asking, mirroring those about 
semantic change and deference to future use that have long featured prominently in philosophy 
of language (see, e.g., Ebbs 2009 for a review and discussion). That such questions arise naturally 
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James also noted the significance of the other predictive force shaping our 
representational scheme, redundancy compression. Indeed, he also laid it down 
as a basic principle of the mind’s organization, claiming that “any total impres-
sion made on the mind must be unanalyzable, whose elements are never expe-
rienced apart” (1890: 502). In other words, we should find it difficult to even 
discriminate two different stimuli unless they at some point occur in different 
circumstances or predict different outcomes. Redundancy compression is thus 
intimately related with predictive differentiation, in that it both serves as the 
mind’s default state which predictive differentiation must overcome to make 
two cue configurations discernible, and continuously serves as a headwind 
against the wanton use of representational resources, pushing representations 
back to an original state of indiscernibility if their distinction does not deliver 
predictive goods. “If all cold things were wet and all wet things cold,” James 
wrote, “if all hard things pricked our skin and no other things did so; is it likely 
that we should discriminate between coldness and wetness, and hardness and 
pungency respectively?” (1890: 502). James provides several actual examples of 
such co-occurring and initially indiscernible phenomena—the contraction of the 
diaphragm and the expansion of the lungs, or the convergence of the eyes and 
focusing on an object—noting that it is only with the aid of theory that we come 
to represent these things distinctly at all, by establishing distinct causes and 
effects that allow us to imagine them occurring apart.

Returning to the GM model of hippocampal learning, we can provide a 
mechanistic explanation for redundancy compression, as it emerges from the 
informational bottleneck in the network’s hidden layer imposes on predictive 
differentiation. The key insight is that when there are more configurations 
which must be distinguished than there are nodes to represent them one-for-
one in the hidden layer, representations must compete with one another for 
common resources. As one representation is revised in response to predictive 
differentiation, it will “jostle” the weights of distinct but related cue configu-
rations which share some of their elements. This will in turn cause an increase 
in errors involving tasks drawing upon the other representations, which may 
suffer from the revisions as innocent bystanders. The only way for a network to 
minimize net representational error across its whole suite of representations is 
to find opportunities to economize, by compressing distinct configurations that 
predict redundant outcomes into the same representation. The fewer distinct 
representations the network has to maintain, the more resources are available to 
other representations, and consequently the fewer bystanders become casualties 
in subsequent predictive differentiation. As the co-predicting representations 

within the forward-looking framework proposed is a benefit of the view, though a full exploration 
of the different kinds of cases and their appropriate verdicts must be left to future work.
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gradually come to coincide, the creature so revising its representations will also 
enjoy the advantages of generalizing the information it has learned about one 
representation to the others, as a free by-product of predictive differentiation 
being forced to operate under the need for efficiency. Notably, this will tend to 
also render representations more inter-subjective, reducing differences derived 
from idiosyncrasies in learning histories from agent to agent, so long as they live 
in a shared environment.

Many cases involving redundancy compression call for more rapid revisions, 
however, suggesting that it may take two different forms: the slow and passive 
return to stable indistinguishability just described, and a more active form that 
seeks out opportunities for economy and missed generalization, which result in 
rapid revisions once discovered. Rapid revisions are more appropriate for many 
of the so-called “twin” cases discussed in the heyday literature, wherein one 
content is represented by two distinct concepts; to return to another stock hey-
day example (Fodor 1994), Oedipus did not require a long period of gradual pre-
diction failure to realize that Jocasta was actually his mother, instead performing 
some quick revisions which resulted in some important new generalizations 
with narratively significant consequences. However, adding a degree of surprise 
to the model which modulates the learning rate of the network can show how 
both more passive and active forms of redundancy compression could be imple-
mented in the same mechanism.

A rich body of empirical research has demonstrated that the mammalian 
brain possess such mechanisms to regulate its learning rate to suit circumstance; 
research has especially focused on the role of acetylcholine in modulating the 
plasticity of the hippocampus and cortex in learning (Hasselmo 2006). Acetyl-
choline is a neurotransmitter which is released by the nucleus basilis into the 
hippocampal and cortical tissues in response to surprisal. Among its other func-
tions, it increases the plasticity of these tissues for a short period of time. This 
can produce a period of rapid revision that subsides when the source of the 
prediction failure is corrected and surprisal diminishes. Indeed, the entire plot 
of Sophocles’ play revolves around Oedipus confronting a series of improba-
ble and unpredictable calamities: that the man he killed on the road years ago 
was the former Theban king Laius, that as a baby he was delivered to Corinth 
by a shepherd instead of born to Corinth’s king Polybus, and that his wife had 
ordered the shepherd to kill Oedipus as a baby so as to avoid the fulfillment 
of a prophecy that the child would murder Laius. Anyone in his position at 
that moment would have been so pumped full of acetylcholine that they could 
quickly compress their representations for Jocasta and mama (learning the truth 
about their tragic marriage would be the complimentary “free” generalization). 
Instead of two different forms of redundancy compression, we may thus really 
have only a single continuum, which can be modulated by altering the rate at 
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which the learning takes place in response to the degree of surprise that the pre-
diction failures generate.

In considering the empirical relevance of forward-looking contents, this 
more rapid form of redundancy compression is of particular interest, because it 
could enable the leaps of “insight” that animal cognition researchers often seek 
to demonstrate in their experimental designs. Different kinds of agents may dif-
fer in their ability to recognize when two perceptually diverse situations A and 
B predict some of the same outcomes; particularly intelligent and attentive ani-
mals may excel at this ability, using it to quickly compress two representations 
into a single vehicle in the course of one experiment. This will in turn cause an 
animal to automatically generalize all other behaviors and predictions previ-
ously associated with A to B and vice versa. As a result, the subject will appear 
to demonstrate “insight” in its behaviors; if the animal previously learned that 
cue A predicted outcome X, and later learns that A and B both predict some 
other shared outcomes Y1, Y2 . . . Yn it can now “infer” that cue B also predicts X, 
despite the fact that B and X never actually co-occurred anywhere in its learning 
history.

An experiment by Bugnyar, Reber, and Buckner (2016) purports to provide 
just such a demonstration of representational flexibility in ravens (Figure 3), in 
a way which engages with the interpretive debate over Theory of Mind which 
was reviewed in Section 3. To provide some background, ravens spontaneously 
cache food items as part of their normal foraging behavior, and like chimpan-
zees, previous experiments have shown that they behave differently when they 
are being watched by a competitor (who might pilfer their caches). Specifically, 
they cache more quickly, are less likely to return to previous caches, and have 
even been observed to make “false caches”—poking their beaks in the ground 
while retaining the food in their throat pouch (Bugnyar 2013). However, in all 
prior designs the ravens could see the competitor’s gaze cues at test, and so this 
body of research had until recently faced the same interpretive stalemate as the 
research on chimpanzees (Heyes 2015).

The recent experiment from Bugnyar’s lab finally overcame this problem by 
showing that ravens could recruit a new, non-gaze cue for seeing, and use it to 
draw novel inferences (Fig. 4).18 Specifically, this experiment provided evidence 
that ravens trained to use peepholes to pilfer another’s caches can later infer that 
when they cache in the presence of an open peephole—even if they had no prior 
experience caching in the presence of peepholes—that unseen competitors might 
be able to watch them through the peephole, too. As a result, they later guard 
their own caches against observation in the presence of the peephole, even if they 

18. This is not to say that all the skeptics have been convinced; see Lurz (2017) and Kuznar, 
Pavlic, Glorioso, and Povinelli (2020).
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cannot see any competitors (or their gaze cues) at the time. A plausible explana-
tion of this result is that they are highly attentive to their own pilfering oppor-
tunities, and were (pleasantly) surprised by the discovery that the peephole 
afforded them the ability to pilfer the experimenter’s caches. This in turn allowed 
them to learn that two perceptually dissimilar situations—<A sees B out in the 
open> and <A sees B through a peephole>—predict some of the same significant 
outcomes, and so they compressed their representations of these two situations 
into an “abstract equivalence class” that economized on their representational 
resources (Whiten 1996). As a side effect of this revision, they were able to gener-
alize an independent prediction associated with a food item’s being visible with 
the peephole cue. In other words, the compression of the representations of the 
two states of affairs would automatically grant them the “insight” that others be 
able to pilfer their caches by watching them through the peephole, too.

This kind of revision constitutes a form of representational control that sig-
nificantly outstrips the less-flexible forms of learning explored by other heyday 
informational views. The attribution of the content seeing over line-of-gaze cru-
cially allowed the researchers to make this prediction (and to explain the suc-
cessful outcome), because there are no gaze cues actually present in the test 
condition of the experiment. This demonstrates that not only was seeing (i.e., the 
F+ candidate) the right content to attribute to the ravens all along—even before 
the recruitment of the peephole cue, when the ravens’ representations only syn-
chronically indicated line-of-gaze (i.e., F)—but also that only the forward-looking 
interpretation of this content attribution could provide the resources to devise 
this experiment and explain its results, thereby breaking this longstanding 
empirical stalemate.19

Though I  have here focused on the base case of Tier 3 representations—
explaining how they are configured and derived from Tier 1–2 contents—a 
similar idea could be extended to more elaborate still “Tier 4” representations, 
which might be scaffolded by more metacognitively sophisticated and socially- 
regulated forms of representation. For example, Shea, Boldt, Bang, Yeung, 
Heyes, and Frith (2014) have recently proposed a two-systems account of 
metacognition that provides a distinctive and important role for interpersonal 
communication in achieving more social and explicit forms of cognitive con-
trol over representational revisions. Organisms that could explicitly consider 
their representational successes and communicate about them with one another 
would achieve forms of representational and behavioral flexibility unavailable 
by other means. They could accumulate and transmit a shared conceptual and 

19. This was only one experiment, but a structurally similar experiment with a similar out-
come has been performed in chimpanzees, with the learned cue being the color of boxes with 
unseen objects inside—see Karg, Schmelz, Call, & Tomasello (2016).
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cultural knowledge to one another over generations, and reflectively evaluate 
their epistemic successes or failures together. This could in turn explain how 
Tier 3 agents bootstrap a further kind of Tier 4 content from humbler Tier 3 
beginnings—which might connect us with more familiar linguistic, theory-me-
diated accounts of reference to natural kinds, such as those of Quine, Putnam, 
and Boyd (Boyd 1999; Putnam 1975; Quine 1969; and see also Wilson 1982). 
This strategy might not only fill in a missing link between deflationary informa-
tional theories of content and inflationary approaches to distinctively human 

Figure 4. Sketch of the experimental setup of Bugnyar et al. (2016). (a) Observed (Obs) 
condition: The cover of the window is open (white bar) and the focal subject (storer, 
st) caches food in the visual presence of a conspecific (observer). (b) Non-observed 
(Non) condition: The cover of the window is closed (grey bar) and the focal subject 
caches food in visual isolation of a conspecific (non-observer). Both observers and non-
observers make sounds in the experimental chamber, which are audible to the storer. (c) 
Peephole (Peep) condition: The cover of the window is closed (grey bar) but one of the 
two peepholes (small white square) is open; the focal subject caches food in the absence 
of any behavioral cues, whereas the presence of conspecifics is simulated via playback 
of sounds recorded from non-observed trials (symbolized by loudspeaker). In this 
experiment, the storer raven was first trained to use peepholes to pilfer caches it observes 
being made by an experimenter. The Obs and Non conditions were used to see how the 
raven behaved when it knew it was and was not being observed, respectively. Caching 
behavior in the Peep condition—the first time the raven had ever cached in the presence 
of the peephole—was then found to match that in the Obs condition and to differ from 
that in the Non condition, despite the fact that no gaze cues were present.
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intentionality, but also provide a fully naturalized story about how each stage 
bootstraps the next without either over- or under-intellectualizing each Tier of 
capacities (Beisecker 1999; Huebner 2011).

7. Conclusion

By updating one of the most popular heyday accounts, the forward-looking 
view here offers a theory of content with distinctive strengths. It grounds at least 
one kind of forward-looking content (Tier 3) in the limit of revision trajectories 
determined not only by a representations’ past or current causal relations, but 
also in the way suitably flexible learning systems are disposed to revise those 
representations in that environment. As a result, it can often assign contents to 
whole-agent-level representations which are more ambitious than views which 
focus on past or synchronic informational relations alone. Furthermore, the abil-
ity of such systems to so revise is determined by well-understood capacities to 
detect evidence of misrepresentation through prediction failure, by bootstrap-
ping upon predictions from simpler (Tier 1–2) contents. And finally, the theory 
can harmonize these tensions while providing useful guidance for the design 
of cutting-edge behavioral experiments, addressing pressing empirical debates 
in psychology and ethology. Specifically, when indeterminacy worries arise for 
these ambitious contents, the agent’s own behavior can be used to resolve the 
ascriptive disagreements, by presenting the animal with evidence of misrepre-
sentation and seeing whether it revises its representations to better track the 
more ambitious contents in response. Thus, contrary to the pessimists, the pros-
pects for content naturalism’s future are good.

Acknowledgments

This paper has been in development for some time, and space does not per-
mit me to thank individually everyone who offered comments and guidance 
during its journey. I do want to especially thank the Southern Society for Phi-
losophy and Psychology which awarded this paper with the Griffith Memorial 
Award, the Alexander von Humboldt Foundation and the National Science 
Foundation (Grant #2020585) for financial support, a conscientious reviewer 
for this journal for helpful comments, and especially Fred Dretske, for being 
so generous with careful, voluminous, and kind correspondence throughout 
his final years, even with a graduate student he had never met in person and 
who stubbornly insisted that his views on content were closer to right in 1986 
than in 1988.



	 A Forward-Looking Theory of Content • 397

Ergo • vol. 8, no. 37 • 2021

References

Allen, Colin (1999). Animal Concepts Revisited: The Use of Self-Monitoring as an Empir-
ical Approach. Erkenntnis, 51(1), 537–44. https://doi.org/10.1023/A:1005545425672

Beisecker, David (1999). The Importance of Being Erroneous: Prospects for Animal Inten-
tionality. Philosophical Topics, 27(1), 281–308.

Bickhard, Mark (1993). Representational Content in Humans and Machines. Journal of 
Experimental & Theoretical Artificial Intelligence, 5(4), 285–333.

Bielecka, Krystyna and Marcin Miłkowski (2019). Error Detection and Representational 
Mechanisms. In J. Smortchakova, K. Dołrega, and T. Schlicht (Eds.), What Are Mental 
Representations? (1–31). Oxford University Press.

Botvinick, Matthew, Sam Ritter, Jane X. Wang, Zeb Kurth-Nelson, Charles Blundell, and 
Demis Hassabis (2019). Reinforcement Learning, Fast and Slow. Trends in Cognitive 
Sciences, 23(5), 408–22.

Boyd, Richard (1991). Realism, Anti-Foundationalism and the Enthusiasm for Natural 
Kinds. Philosophical Studies, 61(1), 127–48.

Boyd, Richard (1999). Kinds, Complexity and Multiple Realization. Philosophical Studies, 
95(1), 67–98.

Brigandt, Ingo (2005). The Instinct Concept of the Early Konrad Lorenz. Journal of the 
History of Biology, 38(3), 571–608.

Buckner, Cameron (2011). Two Approaches to the Distinction between Cognition and 
“Mere Association”. International Journal of Comparative Psychology, 24(4), 314–48.

Buckner, Cameron (2014). The Semantic Problem(s) with Research on Animal Mind-Read-
ing. Mind & Language, 29(5), 566–89.

Buckner, Cameron (2015). A Property Cluster Theory of Cognition. Philosophical Psychol-
ogy, 28(3), 307–36.

Buckner, Cameron and James Garson (2018). Connectionism and Post-Connectionist 
Models. In M. Sprevak and M. Columbo (Eds.), The Routledge Handbook of the Compu-
tational Mind (76–91). Routledge.

Bugnyar, Thomas (2013). Social Cognition in Ravens. Comparative Cognition & Behavior 
Reviews, 8, 1–12.

Bugnyar, Thomas, Stephan A. Reber, and Cameron Buckner (2016). Ravens Attribute 
Visual Access to Unseen Competitors. Nature Communications, 7, 10506.

Call, Josep and Michael Tomasello (2008). Does the Chimpanzee Have a Theory of Mind? 
30  Years Later. Trends in Cognitive Sciences, 12(5), 187–92. https://doi.org/10.1016/j.
tics.2008.02.010

Chemero, Anthony (2011). Radical Embodied Cognitive Science. MIT Press.
Churchland, Patricia Smith and Terrence J. Sejnowski (1990). Neural Representation and 

Neural Computation. Philosophical Perspectives, 4, 343–82.
Churchland, Paul M. (1981). Eliminative Materialism and Propositional Attitudes. The 

Journal of Philosophy, 78(2), 67–90.
Clark, Andy (1989). Microcognition: Philosophy, Cognitive Science, and Parallel Distributed 

Processing (Vol. 6). MIT Press.
Clark, Andy. (2013). Whatever Next? Predictive Brains, Situated Agents, and the Future 

of Cognitive Science. Behavioral and Brain Sciences, 36(3), 181–204.
Clark, Andy (2015). Surfing Uncertainty: Prediction, Action, and the Embodied Mind. Oxford 

University Press.



398 • Cameron Buckner

Ergo • vol. 8, no. 37 • 2021

Cummins, Robert (1990). Meaning and Mental Representation. Mind, 99(396), 637–42.
Cummins, Robert, Hilary Putnam, and Ned Block (1996). Representations, Targets, and 

Attitudes. MIT Press.
Dennett, Daniel C. (1983). Intentional Systems in Cognitive Ethology: The “Panglossian 

Paradigm” Defended. Behavioral and Brain Sciences, 6(3), 343–90.
Dickie, Imogen. (2015). Fixing reference. Oxford University Press.
Dretske, Fred (1981). Knowledge and the Flow of Information. MIT Press.
Dretske, Fred (1986). Misrepresentation. In R. Bogan (Ed.), Belief: Form, Content and Func-

tion (17–36). Clarendon Press.
Dretske, Fred (1988). Explaining Behavior: Reasons in a World of Causes. MIT Press.
Ebbs, Gary (2009). Truth and Words. Oxford University Press.
Eliasmith, Chris (2005). Neurosemantics and Categories. In H. Cohen and C. Lefebvre 

(Eds.), Handbook of Categorization in Cognitive Science (1035–54). Elsevier.
Ericsson, K. Anders and Jacqui Smith (1991). Toward a General Theory of Expertise: Pros-

pects and Limits. Cambridge University Press.
Favorov, Oleg V. and Dan Ryder (2004). SINBAD: A Neocortical Mechanism for Discov-

ering Environmental Variables and Regularities Hidden in Sensory Input. Biological 
Cybernetics, 90(3), 191–202.

Fletcher, Logan and Peter Carruthers (2012). Behavior‐Reading versus Mentalizing in 
Animals. In J. Metcalfe and H. Terrace (Eds), Agency and Joint Attention (p–p). Oxford 
University Press.

Fodor, Jerry A. (1987). Psychosemantics: The Problem of Meaning in the Philosophy of Mind. 
MIT Press.

Fodor, Jerry A. (1990). A Theory of Content and Other Essays. MIT Press.
Fodor, Jerry A. (1994). The Elm and the Expert: Mentalese and Its Semantics. MIT Press.
Friston, Karl (2010). The Free-Energy Principle: A Unified Brain Theory? Nature Reviews 

Neuroscience, 11(2), 127–38. https://doi.org/10.1038/nrn2787
Gärdenfors, Peter (2004). Conceptual Spaces: The Geometry of Thought. MIT Press.
Gershman, Samuel J. (2018). The Successor Representation: Its Computational Logic and 

Neural Substrates. Journal of Neuroscience, 38(33), 7193–200.
Gładziejewski, Paweł (2016). Predictive Coding and Representationalism. Synthese, 

193(2), 559–82.
Gluck, Mark A. and Catherine E. Myers (1993). Hippocampal Mediation of Stimulus 

Representation: A Computational Theory. Hippocampus, 3(4), 491–516.
Gluck, Mark A. and Catherine E. Myers (2001). Gateway to Memory: An Introduction to 

Neural Network Modeling of the Hippocampus. MIT Press.
Godfrey-Smith, Peter (1992). Indication and Adaptation. Synthese, 92(2), 283–312.
Godfrey-Smith, Peter (2014). On Folk Psychology and Mental Representation. In H. 

Clapin, P. Staines, and P. Slezak (Eds.), Representation in Mind: New Approaches to 
Mental Representation (147–62). Elsevier.

Grush, Rick (2004). The Emulation Theory of Representation: Motor Control, Imagery, 
and Perception. Behavioral and Brain Sciences, 27(3), 377–96. https://doi.org/10.1017/
S0140525X04000093

Hare, Brian, Josep Call, B. Agnetta, and Michael Tomasello (2000). Chimpanzees Know 
What Conspecifics Do and Do Not See. Animal Behaviour, 59(4), 771–85.

Hasselmo, Michael (2006). The Role of Acetylcholine in Learning and Memory. Current 
Opinion in Neurobiology, 16(6), 710–15.



	 A Forward-Looking Theory of Content • 399

Ergo • vol. 8, no. 37 • 2021

Heyes, Cecilia (2015). Animal Mindreading: What’s the Problem? Psychonomic Bulletin & 
Review, 22(2), 313–27.

Hinton, Geoffrey E. and Ruslan R. Salakhutdinov (2006). Reducing the Dimensionality 
of Data with Neural Networks. Science, 313(5786), 504–7.

Hohwy, Jakob (2013). The Predictive Mind. Oxford University Press.
Huebner, Bryce (2011). Minimal Minds. In T. Beauchamp and L. G. Frey (Eds.), Oxford 

Handbook of Animal Ethics (441–68). Oxford University Press.
Hutto, Daniel D. and Erik Myin (2012). Radicalizing Enactivism: Basic Minds without Con-

tent. MIT Press.
James, William (1890). Principles of Psychology. Henry Holt & Co.
Karg, Katja, Martin Schmelz, Josep Call, and Michael Tomasello (2016). Differing Views: 

Can Chimpanzees Do Level 2 Perspective-Taking? Animal Cognition, 19(3), 555–64.
Kulkarni, Tejas D., Ardavan Saeedi, Simanta Gautam, and Samuel J. Gershman (2016). 

Deep Successor Reinforcement Learning. ArXiv Preprint. ArXiv:1606.02396
Kuznar, Shannon, Mateja Pavlic, Gabrielle Glorioso, and Daniel Povinelli (2020). Decon-

structing the Raven’s Theory of Mind: An Analysis of Bugnyar et al. (2016). Animal 
Behavior and Cognition, 7(4), 653–57.

Luc, Pauline, Natalia Neverova, Camille Couprie, Jakob Verbeek, and Yann LeCun 
(2017). Predicting Deeper into the Future of Semantic Segmentation. In Proceedings of 
the IEEE International Conference on Computer Vision (648–57).

Lurz, Robert (2011). Mindreading Animals: The Debate over What Animals Know about Other 
Minds. MIT Press.

Lurz, Robert (2017). Animal Mindreading: The Problem and How It Can Be Solved. In 
J. Beck and K. Andrews (Eds.), The Routledge Handbook of Animal Minds (229–37). 
Taylor & Francis.

Mendelovici, Angela A. (2018). The Phenomenal Basis of Intentionality. Oxford University 
Press.

Mendelovici, Angela and David Bourget (2014). Naturalizing Intentionality: Track-
ing Theories versus Phenomenal Intentionality Theories. Philosophy Compass, 9(5), 
325–37.

Miłkowski, Marcin (2015). Satisfaction Conditions in Anticipatory Mechanisms. Biol-
ogy & Philosophy, 30(5), 709–28.

Millikan, Ruth Garrett (1984). Language, Thought, and Other Biological Categories. MIT 
Press.

Millikan, Ruth Garrett (1989). Biosemantics. The Journal of Philosophy, 86(6), 281–97.
Morgan, Alex (2014). Representations Gone Mental. Synthese, 191(2), 213–44.
Nanay, Bence (2014). Teleosemantics without Etiology. Philosophy of Science, 81(5), 

798–810.
Neander, Karen (2006). Content for Cognitive Science. In G. Macdonald and D. Papineau 

(Eds.), Teleosemantics (167–94). Oxford University Press.
Neander, Karen (2017). A Mark of the Mental: In Defense of Informational Teleosemantics. 

MIT Press.
Nirshberg, Gregory and Lawrence Shapiro (2021). Structural and Indicator Representa-

tions: A Difference in Degree, Not Kind. Synthese, 198, 7647–64.
Papineau, David (1988). Reality and Representation. Blackwell.
Penn, Derek C. and Daniel J. Povinelli (2007). On the Lack of Evidence that Non-Human 

Animals Possess Anything Remotely Resembling a ‘Theory of Mind. Philosophical 



400 • Cameron Buckner

Ergo • vol. 8, no. 37 • 2021

Transactions of the Royal Society of London – Series B: Biological Sciences, 362(1480), 
731–44.

Prinz, Jesse J. (2000). The Duality of Content. Philosophical Studies: An International Journal 
for Philosophy in the Analytic Tradition, 100(1), 1–34.

Putnam, Hilary (1975). The Meaning of ‘Meaning’. In K. Gunderson (Ed.), Language, 
Mind, and Knowledge. (139–91). University of Minnesota Press.

Quine, Willard V. O. (1969). Natural Kinds. In N. Rescher (Ed.), Essays in Honor of Carl G. 
Hempel (5–23). Riedel.

Ramsey, William, Stephen Stich, and Joseph Garon (1990). Connectionism, Eliminativ-
ism and The Future of Folk Psychology. Philosophical Perspectives, 4, 499–533.

Ramsey, William M. (2007). Representation Reconsidered. Cambridge University Press.
Ristau, Carolyn A. (1991). Aspects of the Cognitive Ethology of an Injury-Feigning Bird, 

the Piping Plover. In C. A. Ristau (Ed.), Cognitive Ethology: The Minds of Other Ani-
mals; Essays in Honor of Donald R. Griffin (91–126). Lawrence Erlbaum.

Rowlands, Mark (1997). Teleological Semantics. Mind, 106(422), 279–303.
Rupert, Robert D. (1999). The Best Test Theory of Extension: First Principle(s). Mind & 

Language, 14(3), 321–55.
Rupert, Robert D. (2001). Coining Terms in the Language of Thought: Innateness, Emer-

gence, and the Lot of Cummins’s Argument against the Causal Theory of Mental 
Content. The Journal of Philosophy, 98(10), 499–530.

Rupert, Robert D. (2011). Embodiment, Consciousness, and the Massively Representa-
tional Mind. Philosophical Topics, 39(1), 99–120.

Rupert, Robert D. (2018). Representation and Mental Representation. Philosophical Explo-
rations, 21(2), 204–25.

Ryder, Dan (2004). SINBAD Neurosemantics: A  Theory of Mental Representation. 
Mind & Language, 19(2), 211–40.

Scarantino, Andrea (2015). Information as a Probabilistic Difference Maker. Australasian 
Journal of Philosophy, 93(3), 419–43.

Seth, Anil K. (2014). The Cybernetic Bayesian Brain. Open MIND. MIND Group. Retrieved 
from https://open-mind.net/papers/the-cybernetic-bayesian-brain

Shea, Nicholas (2007a). Consumers Need Information: Supplementing Teleosemantics 
with an Input Condition. Philosophy and Phenomenological Research, 75(2), 404–35.

Shea, Nicholas (2007b). Content and Its Vehicles in Connectionist Systems. Mind Lan-
guage, 22(3), 246–69. https://doi.org/10.1111/j.1468-0017.2007.00308.x

Shea, Nicholas (2012). Reward Prediction Error Signals Are Meta-Representational. 
Noûs, 48(2), 314–41. https://doi.org/10.1111/j.1468-0068.2012.00863.x

Shea, Nicholas (2013). Naturalising Representational Content. Philosophy Compass, 8(5), 
496–509.

Shea, Nicholas (2018). Representation in Cognitive Science. Oxford University Press.
Shea, Nicholas, Annika Boldt, Dan Bang, Nick Yeung, Cecilia Heyes, and Chris D. Frith 

(2014). Supra-Personal Cognitive Control and Metacognition. Trends in Cognitive Sci-
ences, 18(4), 186–93.

Sims, Andrew (2017). The Problems with Prediction: The Dark Room Problem and the 
Scope Dispute. Open MIND. MIND Group. Retrieved from https://predictive-mind.
net/papers/the-problems-with-prediction

Slater, Carol (1994). Discrimination Without Indication: Why Dretske Can’t Lean on 
Learning. Mind  & Language, 9(2), 163–80. https://doi.org/10.1111/j.1468-0017.1994.
tb00221.x



	 A Forward-Looking Theory of Content • 401

Ergo • vol. 8, no. 37 • 2021

Summerfield, Donna and Pat Manfredi (1998). Indeterminancy in Recent Theories of 
Content. Minds and Machines, 8(2), 181–202. https://doi.org/10.1023/A:1008243329833

Sutton, Richard S. and Andrew G. Barto (2018). Reinforcement Learning: An Introduction. 
MIT press.

Tiffany, Evan (1999). Semantics San Diego Style. The Journal of Philosophy, 96(8), 416–29.
Timberlake, William (2007). Anthropomorphism Revisited. Comparative Cognition  & 

Behavior Reviews, 2, 139–44.
Usher, Marius (2001). A  Statistical Referential Theory of Content: Using Information 

Theory to Account for Misrepresentation. Mind & Language, 16(3), 311–34.
Whiten, Andrew (1996). When Does Smart Behaviour-Reading Become Mind-Reading? 

In P. Carruthers and P. Smith (Eds.), Theories of Theories of Mind (277–92). Cambridge 
University Press.

Wiese, Wanja (2017). What Are the Contents of Representations in Predictive Process-
ing? Phenomenology and the Cognitive Sciences, 16(4), 715–36. https://doi.org/10.1007/
s11097-016-9472-0

Williams, Daniel (2018). Predictive Processing and the Representation Wars. Minds and 
Machines, 28(1), 141–72. https://doi.org/10.1007/s11023-017-9441-6

Wilson, Mark (1982). Predicate Meets Property. The Philosophical Review, 91(4), 549–89.


