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An adequate account of laws should satisfy at least five desiderata: it should provide 
a unified account of laws and chances, it should yield plausible relations between 
laws and chances, it should vindicate numerical chance assignments, it should 
accommodate dynamical and non-dynamical chances, and it should accommodate 
a plausible range of nomic possibilities. No extant account of laws satisfies these 
desiderata. This paper presents a non-Humean account of laws, the Nomic Likelihood 
Account, that does.

1. Introduction

This paper defends a new account of laws, the Nomic Likelihood Account. The 
motivation for this account comes from the desire for an account that satisfies 
five desiderata, desiderata I take to be necessary conditions on an adequate 
account of laws. Roughly, these desiderata are (1) providing a unified account 
of laws and chances, (2) entailing plausible relations between laws and chances, 
(3) explaining why chance events deserve the numerical values values we assign 
them, (4) accommodating both dynamical and non-dynamical chances, and 
(5) accommodating a plausible range of nomic possibilities.

The Nomic Likelihood Account satisfies all of these desiderata. In broad 
strokes, the nomic likelihood account proceeds as follows. First, it posits a single 
fundamental nomic relation—the “nomic likelihood” relation—which satisfies 
certain constraints. Then it characterizes laws and chances in terms of this rela-
tion. So on this account, laws and chances end up being things that encode facts 
about the web of nomic likelihood relations.
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I’ll present the Nomic Likelihood Account in a largely theory-neutral man-
ner. The main assumption I’ll make, following Lewis (1983), is that there’s a spe-
cial subset of properties, the perfectly natural or fundamental properties, that fix all 
qualitative truths. Thus to describe what the world is like, it suffices to describe 
what there is and what fundamental properties those things have. And to pro-
vide an adequate account of some important feature of the world, one must ulti-
mately be able to spell it out in the language of fundamental properties.1

Here is a road map for the rest of this paper. In Section 2, I spell out the desid-
erata on an adequate account of laws sketched above. After presenting and moti-
vating these desiderata (Section 2.1), I suggest that none of the extant accounts 
of laws satisfy these desiderata, and show how several popular accounts fail to 
do so (Section 2.2). In Section 3, I offer an intuitive sketch of the Nomic Like-
lihood Account. In Section 4, I present the nomic likelihood relation and the 
constraints I take this relation to satisfy. In Section 5, I present a representation 
and uniqueness theorem showing that the pattern of instantiations of the nomic 
likelihood relation can be uniquely represented by things that look a lot like 
laws and chances (Section 5.1). This theorem has some unique features that are 
of independent interest: it can distinguish between nomically forbidden events 
and chance 0 events that aren’t nomically forbidden (e.g., an infinite number 
of fair coin tosses landing heads), and it doesn’t employ the kind of “richness” 
assumptions that such theorems typically require. Using these results, I propose 
an account of laws and chances (Section 5.2), describe some features of laws 
and chances that follow from this account (Section 5.3), and apply the account 
to a toy example (Section 5.4). In Section 6, I show how the Nomic Likelihood 
Account satisfies the desiderata described above. In Section 7, I consider some 
worries for the Nomic Likelihood Account. I conclude in Section 8. Appendices 
A, B, and C, contain proofs of the main results.

2. Desiderata for an Adequate Account of Laws

2.1. The Desiderata

I’ll now present five desiderata that I think must be satisfied by any adequate 
account of laws. While I’ll briefly motivate these desiderata, I won’t engage in an 
extended defense of them here. Those who are inclined to contest some of these 
desiderata can understand my case for the Nomic Likelihood Account as taking 

1. Some have argued that instead of taking the distinction between fundamental and non-
fundamental properties to be primitive, one should take something like a grounding relation to be 
primitive, and characterize the fundamental properties in terms of this grounding relation (e.g., 
see Schaffer 2009). I take what I say here to be largely compatible with such an approach.
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conditional form: if one takes these to be desiderata for an adequate account 
of laws, then we have reason to accept something like the Nomic Likelihood 
Account.

Desideratum 1. An adequate account should provide a unified (and 
appropriately discriminating) account of laws and chances.

An adequate account of laws should provide a unified account of laws and 
chances. It should allow for both probabilistic and non-probabilistic laws, and it 
should recognize non-probabilistic laws as a limiting case of probabilistic laws. 
That is, it should recognize that nomic requirements/forbiddings and chances 
are of a kind, differing only on where they lie on the spectrum of nomic likeli-
hood, with nomic requirements at one end, nomic forbiddings at the other, and 
non-trivial chances in-between. Moreover, it should do this without conflating 
being nomically required/forbidden with having a chance of 1/0. After all, there 
are events that have a chance of 0 that aren’t nomically forbidden (e.g., infinitely 
many fair coin tosses landing heads), and events that have a chance of 1 that aren’t 
nomically required (e.g., infinitely many fair coin tosses not all landing heads).2

Desideratum 2. An adequate account should yield plausible connections 
between laws and chances, laws and other laws, and chances and other 
chances.

An adequate account of laws should yield plausible relations between laws 
and chances, laws and other laws, and chances and other chances. For example, 
it should entail that nomically required events have a chance of 1. It should entail 
that something can’t be nomically forbidden and nomically required at the same 
time. And it should say something about how the dynamical chances at one time 
are related to the dynamical chances at another.

Desideratum 3. An adequate account should describe what, at the funda-
mental level, makes it the case that chance events deserve the numerical 
values they’re assigned.

An adequate account of laws should provide a satisfactory explanation for 
why chance events deserve the numerical values we assign them. That is, it 
should provide an account of the metaphysical structure underlying chances 

2. I speak loosely here of chance events, but it will be more convenient to follow Lewis (1980) 
and take the objects of chance to be propositions. That said, little of importance hangs on this; see 
Section 7 for a discussion of some of the ways in which one can modify the account defended here 
to fit one’s particular ontological sensibilities.
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that explains why these numerical assignments are a “good fit” with the under-
lying metaphysical reality.

To get a feel for what this desideratum requires, let’s consider an unsatisfac-
tory attempt to meet this demand. Suppose one tried to satisfy this desidera-
tum by stipulating that, as a primitive fact, the world has a nomic disposition of 
0.6 strength to bring about one state of affairs given some other state of affairs. 
What, at the fundamental level, does this posit amount to?

At first glance, this would seem to amount to positing a fundamental “nomic 
disposition” relation between one state of affairs, another state of affairs, and 
the number 0.6. But it’s implausible to think that, at the fundamental level, the 
chance facts boil down to relations to numbers of this kind. After all, the choice 
to assign chances values between 0 and 1 is purely conventional; we could assign 
chances using values between 0 and 2, or 0 and 0.5, just as well.3 A more plausible 
story would provide some non-numerical relations whose structure justifies these 
numerical assignments. But this would, of course, require doing more than simply 
stipulating the existence of a nomic disposition of a certain numerical strength.

Desideratum 4. An adequate account should be able to accommodate 
both dynamical and non-dynamical chances (like those of statistical 
mechanics).4

An adequate account of laws should be able to accommodate both dynamical 
chances—such as those of the GRW interpretation of quantum mechanics—and 
non-dynamical chances—such as those of statistical mechanics.5 Since statistical 
mechanical chances are macrostate-relative and compatible with determinism, it 
follows that an adequate account of laws should be able to make sense of macro-
state-relative chances and non-trivial chances at deterministic worlds.6

3. For further worries regarding such appeals to fundamental relations to numbers, see 
section 4 of Eddon (2013a) and Eddon (2013b).

4. Dynamical chances, or transition chances, are chances of the world evolving from some 
state S at one time into another state S′ at another. Non-dynamical chances are chances that can’t be 
thought of in this way; chances of the initial conditions being a certain way are a standard example 
(though see Demarest 2016 for a discussion of how to reinterpret such chances dynamically).

5. The claim that an adequate account of laws should be able to accommodate non-dynamical 
chances is somewhat contentious, but it’s been defended by a number of people, including Loewer 
(2001), Meacham (2005), Winsberg (2008), Frigg and Hoefer (2010), Strevens (2011), Emery (2015), 
Handfield and Wilson (2014), and Elliott (2018).

6. Some have suggested understanding non-dynamical chances, such as those of statistical 
mechanics, as measures of rational indifference. If one adopted this stance, then one could dispense 
with this fourth desideratum, since one would only need an account of laws to accommodate 
dynamical chances. But there are well-known reasons for being skeptical of this understanding of 
statistical mechanical chances. For some of these reasons, see Strevens (1998), Albert (2000), Loewer 
(2001), North (2010), and Meacham (in press); for a survey of this debate, see Meacham (2010).
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Desideratum 5. An adequate account should be able to accommodate 
plausible nomic possibilities.

An adequate account of laws should be able to make sense of a plausible 
range of nomic possibilities. For example, it should be able to make sense of 
laws concerning particular locations, times, or objects, like the Smith’s garden 
case discussed by Tooley (1977). It should be able to make sense of uninstanti-
ated laws, such as worlds where F ma=  is a law but there are no massive objects. 
It should be able to make sense of world in which there is only one chance 
event—a coin toss, say—with a chance of 0.6 of landing heads and a chance of 
0.4 of landing tails. And it should be able to distinguish such a world from an 
otherwise identical world in which the chance of heads is 0.7 and the chance of 
tails is 0.3.

While this is a desideratum that many accounts of laws and chances fail to 
fully satisfy (see Section 2.2), it’s most notably violated by Humean accounts— 
accounts on which the laws and chances supervene on the distribution of local 
qualities. For example, such accounts cannot make sense of uninstantiated laws, 
nor can they distinguish between worlds which differ only with respect to their 
chance assignments. Humeans take this to be a bullet worth biting in order to 
avoid positing fundamental nomic properties or powers. As such, Humeans 
won’t take desideratum 5 to be a requirement on an adequate account of laws, 
even though they might concede that failing to accommodate plausible nomic 
possibilities is a mark against their view. The debate between Humeans and 
non-Humeans is a long one, and I won’t attempt to settle it here. Instead, I’ll 
simply side with the non-Humeans, and assume that desideratum 5 is a require-
ment on an adequate account of laws.

2.2. Other Accounts

To my knowledge, no existing account of laws satisfies the five desiderata 
described above. Due to space constraints, I won’t try to provide an exhaus-
tive discussion of the existing accounts and why they fall short. Instead, I’ll just 
briefly discuss seven prominent accounts, and flag the desiderata that each fails 
to satisfy.

1. Carroll’s (1994) primitivist account fails to satisfy desiderata 2 and 3. 
Carroll’s account takes what the laws and chances are to be primitive. But simply 
stating that such-and-such laws and chances hold doesn’t suffice to tell us what 
relations can hold between laws/chances and other laws/chances (desideratum 
2). For example, it doesn’t tell us anything about how the dynamical chances at 
one time should be related to the dynamical chances at another.
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Likewise, simply stating that it’s a primitive fact that a certain event has 
a chance of 0.6 doesn’t provide a plausible story for what, at the fundamen-
tal level, makes this event deserve this numerical assignment (desideratum 3). 
At first glance, the claim that it’s a fundamental fact that a certain event has a 
chance of 0.6 seems to be asserting that some kind of fundamental relation holds 
between that event and a number. But as we saw in Section 2.1, this story is 
deeply implausible. Alternatively, one might understand claims about numeri-
cal chance assignments as concise ways of describing some more fundamental 
non-numerical structure that underlies these numerical assignments. But such a 
story requires a description of what this more fundamental non-numerical struc-
ture is, and Carroll’s account doesn’t provide us with these details.7

2. Lewis’s (1994) best system account of laws fails to satisfy desiderata 4 and 
5. Lewis’s account requires all chances to be dynamical chances, and so fails 
to satisfy desideratum 4.8 And as a Humean account—an account which takes 
the laws to supervene on the distribution of local qualities—it fails to satisfy 
desideratum 5, since it’s unable to accommodate a plausible range of nomic pos-
sibilities. For (as we saw in Section 2.1) there are plausible nomic possibilities— 
such as pairs of worlds that are identical with respect to the distribution of local 
qualities but different with respect to the chances—that Humean accounts can-
not recognize.

3. Armstrong’s (1983) universalist account fails to satisfy desiderata 2, 3 and 
5. On one natural reading of Armstrong’s account, it takes the nomic facts to 
be entailed by infinitely many fundamental necessitation relations—each intui-
tively corresponding to a different chance value—which hold between pairs 
of fundamental properties (universals) F and G.9 Armstrong’s account fails to 
satisfy desideratum 3 because it doesn’t provide these necessitation relations 
with any structure that would justify one numerical assignment over any other. 
For example, nothing about the account tells us whether the necessitation rela-
tion aN  is stronger than the necessitation relation bN , or whether aN  is closer in 
strength to bN  than cN , or whether aN  is twice as strong as bN . In a similar vein 
Armstrong’s account fails to satisfy desideratum 2, since it doesn’t say enough 
about these necessitation relations to determine what, for example, the relation 
between dynamical chances at different times is. Finally, Armstrong’s account 

7. Maudlin’s (2007) primitivist account doesn’t satisfy desiderata 2 and 3 for similar rea-
sons. Maudlin’s account also fails to satisfy desiderata 4 since it takes all chances to be dynamical 
chances. But Maudlin takes this to be a feature, not a bug.

8. Though there are variants of Lewis’s proposal that allow for such chances; e.g., see Loewer 
(2001), Winsberg (2008), and Frigg and Hoefer (2010).

9. For a discussion of this and other ways of understanding Armstrong’s account of 
probabilistic laws, see Jacobs and Hartman (2017). That said, for the purposes of this paper, figur-
ing out the most plausible reading of Armstrong isn’t important, since Armstrong’s account will 
fail to satisfy desiderata 2, 3 and 5 on all of these readings.
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rules out plausible nomic possibilities (desideratum 5), since it rules out the pos-
sibility of worlds with uninstantiated laws or chances (such as a world where 
Newton’s gravitational force law holds but there are no masses).10

4–5. Swoyer’s (1982) necessitarian account and Lange’s (2009) counterfactual 
account both fail to satisfy desiderata 1, 2 and 3. While these accounts differ in a 
number of ways, they are similar in that they both don’t take chances to be part 
of the laws. Instead, they take chances to be just another quantitative property 
like mass or charge, and their accounts say little more about what chances are 
like. As a result, these accounts fail to satisfy the first three desiderata: they fail to 
provide a unified account of laws and chances (desideratum 1), they fail to yield 
plausible relations between laws/chances and other laws/chances (desideratum 
2), and they fail to explain what, at the fundamental level, makes chance events 
deserve the numerical values they’re assigned (desideratum 3).11

The preceding discussion suggests that most extant accounts of laws have 
particular trouble satisfying desiderata 2 and 3. This is likely because these 
accounts have largely focused on non-probabilistic laws, with probabilistic laws 
being something of a sideshow. So I’ll conclude by assessing two accounts of 
chances that do better with respect to desiderata 2 and 3. Since these accounts 
are only intended as accounts of chance, they won’t provide a unified account 
of laws and chances (desideratum 1), nor say everything we’d like about how 
laws/chances bear on other laws/chances (desideratum 2). But it’s worth seeing 
how they fare.

6. Suppes’s (1973) propensity account of chances fails to satisfy desiderata 
1, 2 and 3, though it does better with respect to desideratum 3 than the other 
accounts we’ve considered. Suppes takes an “at least as probable than” relation 
as primitive, imposes certain constraints on this relation, and then uses these 
constraints to provide representation theorems for various kinds of probabilistic 
phenomena, such as radioactive decay and coin tosses.12 These representation 
theorems show, roughly, that one can assign numerical values to chance events 
that will line up with the “at least as probable than” relation and satisfy the prob-
ability axioms.

Suppes’s account fails to satisfy desiderata 1 and 2 for the reasons given 
above—since it only provides an account of chances, not laws and chances, 
it doesn’t provide a unified account of laws and chances, or the relationships 

10. Tooley’s (1987) universalist account fails to satisfy the same desiderata, though Tooley’s 
account fails to satisfy desideratum 5 for a different reason (namely, it’s unable to make sense of 
laws regarding particular locations, like Smith’s garden; see Carroll 1994: App. A, fn. 6). Tooley’s 
account also takes all chances to be dynamical chances, so it also fails to satisfy desideratum 4.

11. Lange’s (2009) account does say some things about the relationship between laws and 
other laws, and laws and chances (cf. Section 3.7 of Lange 2009), but says little about the relation-
ship between different chance distributions.

12. See Suppes (1987).
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between them. Moreover, Suppes’s account doesn’t provide a unified account 
of chances. For Suppes takes different probabilistic phenomena to impose dif-
ferent kinds of constraints, and goes on to provide different representation theo-
rems for these different phenomena. Thus Suppes’s account of chances is highly 
heterogeneous.13

Suppes’s account does better with respect to desideratum 3, making sub-
stantial progress with respect to explaining what, at the fundamental level, 
makes chance events deserve the numerical values they’re assigned. Unfor-
tunately, it still falls short of providing a satisfactory justification. For while 
Suppes’s approach yields a representation theorem, it doesn’t yield the unique-
ness theorem required to show that these numerical representations are unique. 
Thus this account doesn’t justify our assigning the particular numerical values 
that we do.

7. Konek’s (2014) propensity account of chances fails to satisfy desiderata 1, 2 
and 5. Konek’s account employs a primitive “comparative propensity ordering” 
that satisfies certain constraints, and then uses these constraints to provide a 
representation and uniqueness theorem. Thus we finally have an account which 
fully satisfies desideratum 3—an account that explains what, at the fundamental 
level, makes chance events deserve the numerical values we assign them.

But Konek’s account fails to satisfy desiderata 1 and 2 for reasons we’ve 
already seen—since it’s not an account of laws and chances, just chances, it 
doesn’t provide a unified account of laws and chances, or describe the relations 
that hold between them. Moreover, Konek’s account also doesn’t yield all of the 
relations between chances that one would like. For example, it doesn’t say any-
thing about how dynamical chances at different times are related.14

Finally, Konek’s account fails to recognize some plausible nomic possibili-
ties (desideratum 5). It seems possible for there to be a world with only one 
chance event—a coin toss—with a chance of 0.6 of landing heads (cf. Section 2.1). 
And this possibility seems distinct from an otherwise identical world where the 
chance of heads is 0.7. But on Konek’s account neither of these worlds are pos-
sible—the comparative propensity ordering facts that line up with these num-
bers will be too weak to yield a precise numerical chance assignment, so Konek’s 

13. This is something Suppes takes to be a merit of his account. For he takes the expectation 
that there will be some unified account in the offing to be wrong-headed. Like much of the contem-
porary literature, I’m inclined to disagree.

14. Of course, it would be unfair to raise any of this as a criticism of Konek. Konek’s goal is 
simply to show that proponents of propensity accounts of chances can provide a principled story 
for why they expect propensities to satisfy the probability axioms. And just as it would be unfair 
to criticize Konek for presenting a view which doesn’t provide an account of laws (since Konek 
wasn’t trying to provide an account of laws), it would be unfair to criticize Konek for failing to 
yield relations between dynamical chances at different times (since Konek wasn’t trying to provide 
a comprehensive account of chances).
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account will take such worlds to have imprecise chances. And since the com-
parative ordering facts that line up with these numbers will be the same in both 
worlds, Konek’s account can’t recognize these possibilities as distinct.

3. The Nomic Likelihood Account (I): The Intuitive Picture

Let’s start by sketching the intuitive picture behind the Nomic Likelihood 
Account.

It’s natural to think that laws and chances are of a kind. Deterministic laws 
tell us that if one state of affairs obtains, then another state of affairs is nomically 
required to obtain. Chances tell us that if one state of affairs obtains, then another 
state of affairs has a certain nomic likelihood of obtaining. And nomic require-
ments and nomic likelihoods seem to be instances of the same kind of thing. 
Nomic requirements are just what you get when you turn the nomic likelihood 
“all way up”.

Now, the nomic likelihood of one state of affairs given another is a quantita-
tive feature of the world. You can have different degrees of nomic likelihood. 
And these degrees can be characterized in precise, numerical ways—one state of 
affairs can be twice as likely as another, for example. So what undergirds these 
quantitative features of the world? What’s the metaphysical structure underly-
ing nomic likelihoods?

The view I propose takes its cue from a popular account of quantitative prop-
erties like mass.15 Consider an object that has a certain amount of mass. What 
undergirds the fact that it has that quantity of mass? According to one popular 
account, it’s the mass relations that hold between the object and all other mas-
sive objects. For example, this object might be more massive than some objects, 
and less massive than others. And it’s this web of mass relations that fixes the 
particular amount of mass the object has. What it is for an object to have a par-
ticular amount of mass is just for it to bear the right relations of this kind to 
everything else.

The Nomic Likelihood Account adopts a similar approach to nomic likeli-
hood. In the case of mass, what bears a quantity of mass is an object.16 In the 
case of nomic likelihood, what bears a quantity of nomic likelihood is a pair of 
states of affairs—given this state of affairs, there’s such-and-such likelihood of 
this other state of affairs coming about. Or, if we factor in the fact that these like-
lihoods can vary from world to world, what bears a quantity of nomic likelihood 
is a triple—a pair of states of affairs and a world.

15. For a survey of different accounts of quantitative properties, see Eddon (2013b).
16. Assuming we’re taking objects to be world-bound. If we don’t, then since an object’s mass 

can vary from world to world, we might take the bearer of mass to be an object and world pair.
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Now consider a triple that has a certain nomic likelihood—at this world, 
given this state of affairs, there’s such-and-such likelihood of this other state of 
affairs coming about. What undergirds the fact that this triple has that nomic 
likelihood? According to the Nomic Likelihood Account, it’s the relations that 
hold between that triple and all other triples that have nomic likelihoods. For 
example, this triple might be more nomically likely than some triples, and less 
nomically likely than others. And it’s this web of nomic likelihood relations that 
fixes the particular amount of nomic likelihood this triple has. What it is for a 
triple to have a particular nomic likelihood is just for it to bear the right relations 
to other triples.17

Of course, a satisfying account has to do more than just gesture at certain 
relations. Return to the case of mass. A satisfying account of quantities of mass 
has to do more than gesture at some mass relations. It has to tell us what these 
relations are, what these relations are like, and how these relations vindicate 
taking masses to be quantitative, i.e., vindicate assigning numerical values to 
these quantities in the way that we do. And this is what accounts of quantita-
tive properties like mass do. They propose certain fundamental mass relations, 
present some “axioms” that describe how these relations behave, and provide 
a representation and uniqueness theorem showing that these relations vindi-
cate our using numbers to represent the amount of mass things have in the way 
that we do.

Providing a satisfying account of nomic likelihood requires doing something 
similar. We need to spell out what the fundamental relations are, what these 
relations are like, and how these relations vindicate assigning numerical values 
to chances in the way that we do. This is what I’ll do in the next two sections. 
I’ll spell out the fundamental nomic likelihood relation, present some “axioms” 
describing how this relation behaves, and provide a representation and unique-
ness theorem showing that these relations vindicate our using numbers to rep-
resent amounts of nomic likelihood in the way that we do. And with an account 
of nomic likelihood in hand, it’s straightforward to provide an account of laws 
and chances.

While proponents of the Nomic Likelihood Account can remain neutral 
about many metaphysical debates, it’s hard to sketch an intuitive picture of the 
view in a theory-neutral manner. So I’ve made some assumptions in this Section 

17. For those familiar with the literature on quantitative properties, the account of nomic like-
lihood described here is analogous to the version of the first-order relations account of quantitative 
properties discussed by Eddon (2013a) that allows these relations to hold between individuals 
in different possible worlds. An alternative way of developing the Nomic Likelihood Account is 
sketched in Section 7 in the discussion of the third worry. This alternative “two-layer” account 
of nomic likelihood is analogous to the second-order relations account of quantitative properties 
defended by Mundy (1987) and Eddon (2013a).
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while presenting the picture; for example, I’ve appealed to things like Chisholm-
style states of affairs. But these aren’t assumptions that the Nomic Likelihood 
Account is wedded to; we’ll return to discuss some alternative approaches in 
Section 7.18

4. The Nomic Likelihood Account (II): The Posit

In this Section I’ll present the key posit of the Nomic Likelihood Account, the 
nomic likelihood relation. In Section 4.1 I’ll introduce the nomic likelihood 
relation. In Section 4.2 I’ll introduce some helpful terminology. In Section 4.3 I’ll 
describe the constraints (i.e., axioms) that I take the nomic likelihood relation 
to satisfy.

Two comments before we get started. First, in Section 3 I talked about 
nomic likelihoods in terms of states of affairs. As it turns out, it will be for-
mally more convenient to characterize nomic likelihoods in terms of proposi-
tions instead of states of affairs. But this is purely for convenience—we could 
formulate everything in terms of states of affairs instead, albeit in a slightly 
clunkier way.19 In what follows I’ll assume that a proposition can be identi-
fied with the set of possible worlds at which it’s true.20 I’ll take Ω  to be the set 
of all possible worlds, i.e., the trivially true proposition that some possibility 
obtains, and I’ll take ∅ to be the empty set, i.e., the trivially false proposition 
that no possibility obtains.

Second, it’s worth saying something about the representation and unique-
ness theorem this approach employs in order to help the reader understand the 
motivation for some of the axioms. The measurement theory literature contains 
a number of representation and uniqueness theorems which take an ordering 
relation that satisfies certain constraints, and show that there’s a unique numeri-
cal representation that lines up with that relation. Given this, working out the 
axioms of the nomic likelihood relation and providing a representation and 
uniqueness theorem for it seems like a straightforward task. All that’s required 
to complete this project, it seems, is to take one of these formal results and change 
its interpretation.

Unfortunately, none of the results in the literature can do the work required, 
for two reasons. First, none of the results in the literature I’m aware of can dis-
tinguish between having a probability of 1 and being required to be true. Or, 

18. For example, we can replace the role of states of affairs with properties or propositions (as 
I do in Section 4), or replace the role of worlds with states of affairs or properties.

19. For discussion of some different ways of characterizing the nomic likelihood relation, see 
Section 7.

20. I’ll use the term “set” here loosely to cover both sets and classes.
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given the interpretation we’re interested in, can distinguish between having a 
chance of 1 and being nomically required. So while these results provide us with 
something to identify chances with, they don’t provide us with something to 
identify nomic requirements with. (Recall that we can’t just take nomic require-
ments to be the things that have a probability of 1, for there are things which 
have a probability of 1 that aren’t nomically required—e.g., an infinite number 
of fair coin tosses not all landing heads.) In order to satisfy the first desideratum 
of Section 2.1, we need an account that can make such distinctions.

Second, all of the theorems in the literature I know of require strong “rich-
ness” assumptions in order to derive their result.21 These richness assumptions 
impose strong constraints on the probability function, such as, e.g., that for every 
value in the unit interval, there’s something that has that probability. This rules 
out plausible nomic possibilities like there being a world with only a single 
chance event, e.g., a coin toss, which has a chance of 0.6 of heads and a chance 
of 0.4 of tails. In order to satisfy the fifth desideratum of Section 2.1, we need an 
account that can recognize such possibilities.

The framework I’ll present will allow us to distinguish between having a 
chance of 1 and being nomically required. It does so by introducing, in addition 
to the unique largest and smallest nomic likelihoods unique next largest and 
next smallest likelihoods. Likewise, the framework I’ll present doesn’t need to 
posit the kind of richness axioms the existing theorems require. This is because 
it introduces cross-world relations that effectively allow us to “import” richness 
from other worlds. Of course, these changes require replacing many of the stan-
dard axioms that the results in the literature employ, and showing that we can 
still derive everything we want from their replacements.

4.1. The Nomic Likelihood Relation

Here is the fundamental posit of the Nomic Likelihood Account:

The Nomic Likelihood Relation: There exists a fundamental six-place nomic 
likelihood relation, ( , , , , , )C A w C A w′ ′ ′  (“C given A at w is at least as nomi-
cally likely as C′ given A′ at w′”), that satisfies the 12 nomic axioms (cf. 
Section 4.3), where w, w′ are worlds, and A, A′, C, C′ are propositions that 
supervene on the fundamental properties and relations other than .

21. For some discussions of worries regarding these richness axioms in the context of 
standard theories of quantitative properties, see Melia (1998), Eddon (2013a), Eddon (2013b), and 
Perry (2015).
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The last clause ensures that the propositions the nomic likelihood relation 
holds of aren’t themselves about nomic facts. I take this constraint to be inde-
pendently plausible, and it ensures that we won’t run into self-reference para-
doxes. Now let’s turn to the 12 nomic axioms that the nomic likelihood relation 
is required to satisfy.

4.2. Terminology

Let me start by introducing some terminology.
Let ,A wC  be an ordered triple consisting of a pair of propositions ,A C ⊆Ω 

and a world w∈Ω. I’ll call A and C the antecedent and consequent propositions of 
the triple, respectively. When expressing such triples, everything that’s bolded 
should be understood as describing the consequent proposition of the triple. 
E.g., ,( )A w∩C C′  is a triple whose consequent proposition is C C∩ ′, whose ante-
cedent proposition is A, and whose world is w. When talking about triples which 
share the same indices, I’ll leave the indices implicit.

At the risk of abusing notation, I’ll often express the nomic likelihood rela-
tion in terms of these triples. Thus I’ll use “ , ,A w A w′ ′C C′ ” as shorthand for 
“ ( , , , , , )C A w C A w′ ′ ′ ”. Using this notation, we can define the “more nomically 
likely than” relation  as follows: C C′ iff C C ′ and /C C′ . Likewise, we can 
define the “nomically on a par” relation ~ as follows: ~C C′ iff C C ′ and C C′ .

Let NS (for “nomic space”) be the set of all triples ,A wC  such that ,C A, and w 
are either the first three or last three arguments of some instantiation of . Intui-
tively, NS is the set of all triples that have nomic likelihoods.

Let the (A,w)-cluster be the subset of NS containing all the triples with A 
and w as their second and third members. Intuitively, A and w pick out a situ-
ation, and the (A,w)-cluster identifies the consequent propositions that nomic 
likelihoods are assigned to in that situation. For example, if A and w pick out a 
chance distribution, the (A,w)-cluster will consist of the triples whose consequent 
propositions are assigned chances by this distribution. Note that clusters can be 
“gappy”, in the sense that for some propositions C, the (A,w)-cluster won’t con-
tain ,A wC . This is because, holding A and w fixed, there can be nomic constraints 
on some consequent propositions but not others. For example, A and w might 
pick out a chance distribution which assigns chances to propositions about the 
behavior of particles, but not to propositions about the behavior of incorporeal 
spirits. Likewise, note that clusters can be empty. For example, if w is a lawless 
world, then the (A,w)-cluster will be empty, since no triples of the form ,A wC  are 
assigned nomic likelihoods.

With this notation in hand, let’s turn to the 12 nomic axioms.
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4.3. The Nomic Axioms

1. We haven’t imposed any constraints on which consequent propositions C are 
assigned nomic likelihoods in an (A,w)-cluster. For example, as it stands, it could 
be the case that C is assigned a nomic likelihood but C is not; or that C and C′ 
are assigned nomic likelihoods but C C∪ ′ is not. The first axiom ensures that the 
consequent propositions that are assigned nomic likelihoods are closed under 
natural operations like negation and disjunction. E.g., it ensures that if given 
certain meteorological conditions A at world w there’s some nomic likelihood of 
it raining (C), then there’s also some nomic likelihood of it not raining (C); and 
if there’s some nomic likelihood of it raining (C) and some nomic likelihood of 
it snowing (C′), then there’s also some nomic likelihood of it raining or snowing 
(C C∪ ′).

Axiom 1 (σ -algebra):

1.	 If C is in NS, then C  is in NS.
2.	 If , ,…C C1 2  are in NS, then =



i iC1
∞

 is in NS.

Formally, this axiom ensures that for every non-empty (A,w)-cluster, the con-
sequent propositions in that cluster form a σ -algebra.

2. Nothing we’ve said so far requires all triples with nomic likelihoods to 
be comparable, or requires comparisons between triples to be transitive. For all 
we’ve said, it could be the case that it raining (given meteorological conditions 
A at w) is more nomically likely than it snowing (given A′ at w′), and it snowing 
(given A′ at w′) is more nomically likely than it being sunny (given A′′ at w′′), 
but it raining (given A at w) is neither more nomically likely than, less nomically 
likely than, or on a par with, it being sunny (given A′′ at w′′). The second axiom 
rules this out, by ensuring that all triples with nomic likelihoods are comparable, 
and that these comparisons are transitive.

Axiom 2 (Weak Order):

1.	  is connected: for all , ,,A w A w′ ′C C′  in NS, either , ,A w A w′ ′C C ′  or , ,A w A w′ ′C C′  .
2.	  is transitive: for all , ,,A w A w′ ′C C′ , ,A w′′ ′′C′′  in NS, if , ,A w A w′ ′C C ′ , and 

, ,A w A w′ ′ ′′ ′′C C′ ′′ , then , ,A w A w′′ ′′C C ′′ .

Formally, this axiom ensures that the nomic likelihood relation provides a weak 
ordering of NS.

3. The previous axioms haven’t imposed any constraints on how the nomic 
likelihoods assigned to members of different (A,w)-clusters line up with each 
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other. For example, as it stands, it could be that all the triples in one cluster are 
more nomically likely than all the triples in another. The third axiom ensures 
that triples whose consequent propositions are trivially true (Ω ) or trivially 
false (∅) have the same nomic likelihoods in all (A,w)-clusters. Intuitively, this 
ensures that the “ceiling” and “floor” of nomic likelihoods is the same at all 
clusters.

Axiom 3 (Cross-algebra Comparisons):

1.	 If ,A wΩ  and ,A w′ ′Ω  are in NS: , ,~A w A w′ ′Ω Ω .
2.	 If ,A w∅  and ,A w′ ′∅  are in NS: , ,~A w A w′ ′∅ ∅ .

4. So far, nothing we’ve said requires there to actually be any triples with 
nomic likelihoods. For all we’ve said, it could be the case that all (A,w)-clus-
ters are empty. And even if we assume there are non-empty clusters, nothing 
we’ve said requires them to be fine-grained. E.g., it could be the case that every 
triple which has a nomic likelihood is on a par with (say) one of three triples, 
entailing that there are effectively only three degrees of nomic likelihood. And 
even if we assume there is a cluster with a rich range of nomic likelihoods, 
nothing we’ve said requires these nomic likelihoods to be fine-grained enough 
to distinguish between consequent propositions that are nomically required 
and ones which are “just” overwhelmingly likely (e.g., that at least one of infi-
nitely many fair coin tosses lands heads). The fourth axiom imposes “richness” 
requirements that ensure there’s an appropriately fine-grained range of nomic 
likelihoods.

Axiom 4 (Rich Algebra): There exists a particular cluster, call it “R” (for “rich”), 
with the following features:

1.	 There is a pair of triples in R, call them “∅ +” and “Ω -”, such that:
(a)	 Ω  ∅ ∅ Ω+ - .
(b)	 For all C such that ~ ,/ C C∅ ∅ + .
(c)	 For all C such that ~ ,/ C CΩ Ω - .

2.	 There are no C ∅ + in R such that, for any C′ in R such that C C′ ⊂ , 
either:
(a)	 ~C C′ .
(b)	 ~C′ ∅.
(c)	 ~C′ ∅ +.
(d)	 ~C′ Ω - and ~C Ω .

3.	 For any ,A wC  and ,A wC′  in NS such that C C∩ ′ =∅, there’s some RC′′ and 
RC′′′ in R such that , ~A w RC C′′, , ~A w RC C′ ′′′ and C C′′∩ ′′′ = ∅.
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This is an important axiom, so it’s worth talking through what it says in a bit 
more detail. This axiom posits the existence of a “rich” cluster, R. The three 
clauses of this axiom ensure that R is rich in three different ways. (This axiom 
is compatible with there being multiple clusters which satisfy these clauses. 
But “R” is a name for a particular one of them.)

The first clause entails that in this rich cluster there’s (i) a “next highest” rank 
of nomic likelihood, which sits below Ω but above every other rank, and (ii) a 
“next lowest” rank of nomic likelihood, which sits above ∅ but below every other 
rank. I use the names “Ω -” and “∅ +” for some particular triples in R that have 
these ranks. (This clause is compatible with there being multiple triples in R which 
have these ranks. But “Ω -” and “∅ +” are names for a particular pair of them.)

It’s worth emphasizing that “Ω -” and “∅ +” are names for two particular 
triples in R, not names for the consequent propositions of some triples whose 
indices have been left implicit. (E.g., I’m not using “Ω -” as shorthand for “ RΩ - ”; 
“ -Ω ” is not the name of a proposition.) Thus Ω - and ∅ + will never be expressed 
with indices; the second and third elements of these triples are fixed.

In what follows, it will be convenient to have a name for triples C whose rank 
is such that  C∅ Ω+ -. I’ll say that such triples have a middling rank.

The second clause is the analog of the standard “atomless” assumption.22 
Roughly, it ensures that in this rich cluster, any triple C of at least middling rank 
can be always be decomposed into smaller triples of middling rank.

The third clause ensures that every degree of nomic likelihood is instantiated 
in R. That is, it entails that R is rich enough to be such that every triple in NS is 
nomically on a par with some triple in R.23

5. Intuitively, nomic likelihoods should satisfy something like a qualitative 
notion of additivity. For example, given meteorological conditions A at world w, 
if it raining (C) is more nomically likely than it snowing (C′), then it raining or 
being sunny (C C∪ ′′) should be more nomically likely than it snowing or being 
sunny (C C′∪ ′′).24 The fifth axiom ensures that nomic likelihoods will satisfy this 
kind of additivity requirement.

22. An atom is a triple ∅C  such that any C′ that C contains is either on a par with C or ∅ . So, 
intuitively, an atom is a triple with some nomic likelihood which can’t be decomposed into any-
thing that’s strictly less nomically likely, but still at least somewhat nomically likely. The standard 
atomless assumption is just the assumption that there are no atoms: there are no ∅C  such that, 
for any C′ such that C C′ ⊂ , either (a) ~C C′ , or (b) ~C′ ∅. Introducing ∅ + and Ω - requires modify-
ing the standard atomless assumption. This modified assumption (the second clause of Axiom 4) 
entails that if we remove all triples on a par with ∅ + and Ω -, then this rich cluster will be atomless.

23. Though this is not all it entails; it also entails that for any two disjoint triples in any cluster, 
there are two disjoint triples in R that have those same ranks.

24. Where I’m assuming here that raining, snowing, and being sunny are mutually exclusive.
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Axiom 5 (Restricted Cross-algebra Additivity): Suppose that ,( )A wC C∩ ′  
, ,~ ( ) ~A w A w′ ′C C′′ ∩ ′′′ ∅ , that , ,~A w A w′ ′C C′′ , and that none of the following 

three conditions hold: (i) , ~A wC Ω -, , ,~ ~A w A w′ ′C C′ ′′′ ∅ +, (ii) , ~A wC ∅ +, 
, ,~ ~A w A w′ ′C C′ ′′′ Ω -, (iii) , , ,A w A w A w CΩ ∅ , , ,~A w A wC′ ∅ , , ~A w′ ′C′′′ ∅ +. Then 
, ,A w A w′ ′C C′ ′′′  iff , ,( ) ( )A w A w′ ′C C C C∪ ′ ′′ ∪ ′′′ .

It’s worth flagging two ways in which this qualitative additivity axiom differs 
from typical qualitative additivity axioms. First, typical qualitative additivity 
axioms don’t include conditions (i)–(iii). But the introduction of Ω - and ∅ + 
requires the additivity claim to be restricted to cases where none of conditions 
(i)–(iii) hold.25 Second, typical qualitative additivity axioms effectively only 
apply within a single cluster. But in order to “import” richness facts from other 
clusters, we need the additivity claim to apply to triples belonging to different 
clusters.26

6. The sixth axiom plays an important role in establishing the representation 
and uniqueness theorem, but it’s a bit harder to get an intuitive grip on than the 
other axioms. Consider a sequence of triples from some cluster that’s “expand-
ing”, in the sense that the consequent proposition of each triple in the sequence is 
entailed by the consequent propositions of all the earlier members of the sequence. 
And suppose some other triple C is more nomically likely than any triple in this 
sequence. Then it’s natural to think that C should also be more nomically likely 
than a triple whose consequent proposition is the disjunction of all of the conse-
quent propositions in this sequence. This is what the sixth axiom requires.

Axiom 6 (Continuity): If for all i, iC C  and 1i iC C +⊆ , then 


i iC C ∞
=1 .

Formally, this axiom ensures that the  relation is monotonically continuous.
7. So far we’ve said little about how the nomic likelihoods of triples on a par 

with ∅ + and Ω - behave. For example, given conditions A at world w, suppose 

25. We need to add these restrictions because if any of (i)–(iii) obtain, we can construct coun-
terexamples to the additivity claim (that , ,A w A w′ ′C C′ ′′′  iff , ,( ) ( )A w A w′ ′∪ ∪C C C C′ ′′ ′′′ ). For an intuitive 
example within a single algebra, let =C C′′ be the proposition that at least two of infinitely many 
coin tosses landed tails, let C′ be the proposition that none of infinitely many coin tosses landed 
tails, and let C′′′ be the proposition that no more than one of infinitely many coin tosses landed 
tails. This is an instance of (ii): ~C Ω -, and ~ ~C C′ ′′′ ∅ + . Now note that the rest of the conditions 
this axiom imposes (other than (i)–(iii)) are satisfied: ~ ~C C C C∩ ′ ′′ ∩ ′′′ ∅ , and ~C C′′. But while 

C C′ ′′′ is true, ~ ~C C C C∪ ′ Ω ′′ ∪ ′′′ Ω-  is false. Thus without the restriction ruling out cases of 
type (ii), axiom 5 would be false. And we can construct similar counterexamples if we omit condi-
tions (i) or (iii).

26. A third and more subtle way in which it differs from typical qualitative additivity axi-
oms is that it doesn’t require C and C′ (and C′′ and C′′′) to actually be disjoint. Instead, it merely 
requires the triples corresponding to these intersections to be on a par with ∅.
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the nomic likelihood of a certain coin landing heads (C) is middling, the nomic 
likelihood of an independent sequence of infinitely many coins all landing heads 
(C′) is on a par with ∅ +, and the nomic likelihood of at least one coin in this infi-
nite sequence landing tails (C′) is on a par with Ω -. How does the nomic likeli-
hood of the coin landing heads (C) compare to that of the coin landing heads or 
the infinite sequence of coins all landing heads (C C∪ ′)? Likewise, how does the 
nomic likelihood of the coin landing heads (C) compare to that of the coin land-
ing heads and at least one of an independent infinite sequence of coins landing 
tails (C C∩ ′)? The seventh axiom settles the answer to these questions, holding 
in both cases that the likelihoods are the same.

In particular, the seventh axiom entails that adding things on a par with ∅ + 
can only result in a change of likelihood in extremal cases, when it’s added to 
something on a par with ∅ or Ω -. Likewise, it entails that intersecting things on 
a par with Ω - can only result in a change of likelihood in extremal cases, when 
it’s intersecting something on a par with ∅ + or Ω.

Axiom 7 ( +/ -∅ Ω  Differences):

1.	 If  C∅ Ω+ -, and ~C′ ∅ +, then ~ ∪C C C′.
2.	 If  C∅ Ω+ -, and ~C′ Ω -, then ~∩C C C′ .

8. We haven’t yet imposed any requirements tying nomic likelihood to 
truth. For all we’ve said, it could be the case that if meteorological condi-
tions A hold at world w then it’s maximally likely that it will rain (C), and 
meteorological conditions A do hold at w, and yet it doesn’t rain at w. The 
eighth axiom ensures that nomic likelihood is tied to truth in the way we’d  
expect.

Axiom 8 (Ω Instantiation): If , ,~A w A wC Ω , and w A∈ , then w C∈ .

9. Nothing we’ve said so far has imposed conditions tying the fact that if A 
obtained at w then C would have a certain likelihood to the possibility of A obtain-
ing. Consider the set of worlds wL  containing all the worlds that assign the same 
nomic likelihoods as world w. (I.e., if ww L′∈ , then for all ,A w′′ ′′C′′  in NS, , ,A w A w′′ ′′C C′′  
iff , ,A w A w′ ′′ ′′C C′′ .) And suppose that given meteorological conditions A at a world 
in wL , there’s a certain nomic likelihood of rain (C). As it stands, this could be true 
even though there’s no world in wL  at which conditions A hold. One might take 
this to be implausible. If there’s a certain likelihood of rain given certain meteo-
rological conditions at w, then there should be some nomically similar world 
where those meteorological conditions obtain. The ninth axiom ensures that this 
is the case.
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Axiom 9 (Antecedent Instantiation): If ,A wC  is in NS, then there exists a w A′∈  
such that for all ,A w′′ ′′C′′  in NS, , ,A w A w′′ ′′C C′′  iff , ,A w A w′ ′′ ′′C C′′ .

10. Nothing we’ve said so far has imposed conditions tying the fact that if A 
obtained at w then C would have a middling likelihood to the possibility of C obtain-
ing. Suppose that given meteorological conditions A at a world in wL , there’s a 
middling nomic likelihood of rain (C). As things stand, it could be the case that 
it rains at every world in wL  where A obtains, even though it only has a middling 
likelihood of doing so. Likewise, it could be the case that it doesn’t rain at any 
world in wL  where A obtains, even though it has a middling nomic likelihood of 
doing so. Both scenarios are implausible: if there’s a middling likelihood of rain, 
then there should be some A-worlds in wL  where it rains, and some where it does 
not. The tenth axiom ensures that this is the case.

Axiom 10 (Chancy Instantiation): If , , ,A w A w A w C∅ Ω , then there exists a w′ 
and w′′ such that:

1.	 For all ,A w′′′ ′′′C′′′  in NS, , ,A w A w′′′ ′′′C C′′′  iff ′ ′′′ ′′′, ,A w A wC C′′′  iff , ,A w A w′′ ′′′ ′′′C C′′′ .
2.	 w A′∈  and w A′′∈ .
3.	 w C′∈  and w C′′∈/ .

11. The previous axioms haven’t imposed any constraints on what triples 
there are in different (A,w)-clusters indexed to the same world. Suppose that 
given meteorological conditions A at w, there’s a middling likelihood of it rain-
ing the next day (C) and a middling likelihood of it raining the day after that (C′). 
And consider the nomic likelihoods that might obtain at w given those meteo-
rological conditions and that it rains the first day (A C∩ ). For all we’ve said so 
far, it could be that given A C∩  at w there’s a maximal likelihood assigned to it 
raining the first day (C), but no likelihood at all—whether high or low—assigned 
to it raining the second day (C′). That is, it could be that the (A C∩ ,w)-cluster is 
simply silent about the likelihood of it raining the second day. This is odd. If 
the (A,w)-cluster assigns a nomic likelihood to C′, it seems the (A C∩ ,w)-cluster 
should as well. The eleventh axiom ensures this, by requiring clusters at the 
same world to have consequent propositions that line up with each other.

Axiom 11 (Same Algebra): Suppose that A A⊃ ′, that ,A w A′ ∅ +, and that the 
(A′,w)-cluster is not empty. Then ,A w′C  is in NS iff ,A wC  is in NS.27

27. To see why the ,A w A′ ∅ + clause is required, consider the chance of a dart landing on 
various points in the 0 to 1 cm interval, with uniform probability. Let A be the proposition that a 
dart landed in the 0 to 1 cm interval, A′ be the proposition that the dart landed on some rational 
number in the 0 to 1 cm interval, and C be the proposition that the dart landed on the 0.5 point in 
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12. Axiom 11 ensures that clusters at the same world have consequent 
propositions that line up with each other. But while axiom 11 ensures that 
these clusters will assign nomic likelihoods to the appropriate propositions, we 
haven’t yet said anything about what the magnitudes of these nomic likelihoods 
should be. Suppose that given meteorological conditions A at w, there’s a mid-
dling likelihood of it raining the next day (C), a middling likelihood of it raining 
the day after that (C′), and a smaller but still middling likelihood of it raining 
both days (C C∩ ′). Given those meteorological conditions and that it rains the 
next day (A C∩ ), what should the likelihood of it raining both days be? For all 
we’ve said so far, it could be anything, including on a par with the trivially true 
proposition Ω  or the trivially false proposition ∅. This is implausible: the likeli-
hood of it raining both days should be middling. The twelfth axiom ensures this, 
by requiring the nomic likelihoods assigned by same-world clusters to line up in 
the way you’d expect.

Formulating the twelfth axiom precisely requires a little stage-setting. Let an 
n-equipartition P of a cluster be a set of n triples iP  which are all nomically on a 
par with each other, and whose consequent propositions are mutually exclusive 
and exhaustive.28 Let :f NS× →  be a function such that: ,( , )A wf n x=C  iff for 
any n-equipartition P of the rich cluster R, and any ,A wC  in NS:

,( , )A wf n C  = n if , ,~A w A w
i n
i iC P1( )=
=∪ .

,( , )A wf n C  = m if 0n m> >  and , , ,A w A w A w i m i m
i i i iP C P1

1 1( ) ( )= + =
= =∪ ∪ .

,( , )A wf n C  = 0 if , ,A w A wP C1 .

Intuitively, f  takes a natural number n and a triple C, and spits out a natural 
number x indicating that the nomic likelihood of C is at least x

n  that of Ω , but less 
than 1x

n
+  that of Ω . Thus if ( , ) 0f n =C , we know the nomic likelihood of C is less 

than 1
n  of Ω ; if ( , ) 1f n =C , we know the nomic likelihood of C is at least 1

n  but n
less than 2

n  of Ω ; and so on; and if ( , )f n n=C , we know the nomic likelihood of C 
is at least n

n  of Ω , i.e., is exactly that of Ω .

Axiom 12 (Algebra Coordination): Suppose that ,A wA , ,A w′A , ,( )A w∩C A , and 
,( )A w′∩C A  are in NS. If A A⊆ ′, and if it’s not the case that there’s some m 

such that for all n m> , ,( , ) 0A wf n =A  or ,( , ) 0A wf n ′ =A , then:

the 0 to 1 cm interval. Then A A⊃ ′, and the ( ,A w′ )-cluster is not empty, but while ,A wC  is plausi-
bly in NS (since given A, C has a chance of 0), ,A w′C  is plausibly not in NS (since given A′ and the 
uniform probability assumption, no well-defined chance can be assigned to C without violating 
countable additivity).

28. That is, an n-equipartition P is a set of n  triples iP such that (i) , , ~i j∀ i jP P , (ii) , , i ji j P P∀ ∩ =∅, 
and (iii) 1, i n

i ii P=
=∀ ∪ = Ω .
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This axiom ensures that if A A⊆ ′, the (A,w)-cluster and the (A′,w)-cluster agree 
on the proportion of A’s nomic likelihood that contributes to C’s likelihood.

Some key lemmas that follow from the axioms are described in appendix 
A.1. The proofs of these lemmas are given in appendix A.2.

5. The Nomic Likelihood Account (III): The Account

In this Section I finish developing the Nomic Likelihood Account. In Section 5.1 
I’ll present a representation and uniqueness theorem regarding the nomic likeli-
hood relation. In Section 5.2, using these results, I’ll present the Nomic Likelihood 
Account of laws and chances. In Section 5.3 I’ll present some consequences of 
this account regarding laws and chances. And in Section 5.4 I’ll present a toy 
example of some complete laws given the Nomic Likelihood Account.

Before we proceed, it’s worth sketching the role that the representation and 
uniqueness theorem plays in this account. It’s helpful to start with an analogy. 
In the decision theory literature, people have offered representation and unique-
ness theorems showing that if a subject’s preferences satisfy certain conditions, 
then there’s a (more or less) unique pair of functions that line up with these pref-
erences in the way you’d expect rational credences and utilities to line up with 
them. One popular account of credences and utilities identifies them with the 
functions picked out by these theorems.29 On this account, credences and utilities 
are just things that encode facts about a subject’s preferences. And if we adopt 
this account, the theorem provides a straightforward explanation for why cre-
dences and utilities deserve the numerical values we assign them—because these 
are the only numerical assignments that line up with preferences in the right way.

Similarly, the representation and uniqueness theorem described in Section 5.1 
shows that if the nomic likelihood relation satisfies certain conditions, then there’s 
a unique function and pair of relations that line up with these nomic likelihood 
relations in the way you’d expect chances and nomic requirements/forbiddings to 
line up with them. The Nomic Likelihood Account identifies chances and nomic 
requirements/forbiddings with the function and relations picked out by the theo-
rem. On this account, chances and nomic requirements/forbiddings are just things 
that encode facts about the web of nomic likelihood relations. And if we adopt 
this account, the theorem provides a straightforward explanation for why chances 

29. For classic presentations, see Savage (1954) and Jeffrey (1965). For criticisms of these 
accounts, see Eriksson and Hájek (2007) and Meacham and Weisberg (2011).
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deserve the numerical values we assign them—because these are the only numeri-
cal assignments that line up with the nomic likelihood relations in the right way.

5.1. The Representation and Uniqueness Theorem

We can partition the space of worlds such that two worlds w′ and w′′ are in the 
same cell of the partition iff, for all C′, A′, and all ,A wC  in NS: , ,A w A w′ ′C C′  iff 

, ,A w A w′ ′′C C′ . Intuitively, two worlds are in the same cell of this partition iff the 
same nomic facts hold at both worlds. I’ll call this the nomic partition. I’ll use L, L′, 
L′′, etc., to denote different cells of this partition, and wL  to denote the cell w is in.

The following theorem is shown in appendix B:30

The Representation and Uniqueness Theorem: If  satisfies the nomic likeli-
hood axioms, then there’s a unique function , ( )A Lch C  (that takes three 
propositions C, A, and L as arguments, and spits out a real number be-
tween 0 and 1), and a unique pair of three-place relations ,( )A wNR C  and 

,( )A wNF C  (that hold between a pair of propositions C and A and a world 
w),31 such that:

1.	 , ,( ) ( )A L A Lch C ch C′ ′≥ ′  iff for any w L∈  and w L′∈ ′, either:
(a)	 , ,A w A w′ ′C C′ .
(b)	 , ,A w A w′ ′/C C′ , and , ~A wC Ω - and , ,~A w A w′ ′ ′ ′C′ Ω .
(c)	 , ,A w A w′ ′/C C′ , and , ,~A w A wC ∅  and , ~A w′ ′C′ ∅ +.

2.	 ,( )A wNR C  iff , ,~A w A wC Ω .
3.	 ,( )A wNR C  iff , ,~A w A wC ∅ .

Furthermore, the function , ( )A Lch ⋅  will be a countably additive probability 
function.32

30. As it turns out, only the first seven nomic axioms are required to obtain this result. The 
last five nomic axioms only come into play when deriving the lemmas regarding laws and chances 
given in Section 5.3.

31. One would typically express these relations as ( , , )NR C A w  and ( , , )NF C A w . But in what 
follows it will be more convenient (if a slight abuse of notation) to express these relations in terms 
of triples.

32. That is, for all A and L , , ( )A Lch ⋅  will be such that:

1.	For all C such that ,A w NS∈C , , ( ) 0
wA Lch C ≥ .

2.	For any ,A w NS∈Ω , , ( ) 1
wA Lch Ω = .

3.	For any sequence 1 , , ,iC C… …  such that for all iC  ,i A w NS∈C , and for all i j≠ , i jC C∩ =∅,

∞

==

 
= 

 
∑, ,

1,

( ). 
w wA L A L i

iw A

ch ch Ci
i

C
1

∞
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This theorem shows that the nomic likelihood relation can be uniquely rep-
resented by a countably additive probability function ch which assigns numbers 
that line up with the nomic likelihood relation, and a pair of relations NR (nomi-
cally required) and NF (nomically forbidden) that hold between the members of 
a triple ,A wC  iff it’s maximally or minimally nomically likely, respectively.

5.2. The Account of Laws and Chances

Given the representation and uniqueness theorem, we can provide an account of 
laws, chances, and nomic requirements and forbiddings, as follows.

Complete Laws of Nature: A world w has complete laws of nature L iff wL L= .33

It will be convenient to follow Lewis (1979) and identify properties with the 
set of possible individuals that instantiate them. Since the property  of being 
a world with laws wL  picks out the same set of worlds as the proposition L that 
laws wL  obtain, it follows that L= . Thus we can refer to the laws as both prop-
erties and propositions, since they’re both.

The Nomic Likelihood Account then identifies chances, nomic requirements 
and nomic forbiddings with the ch function and NR and NF relations provided 
by the representation and uniqueness theorem:

Chances: The chance of C given complete laws L and antecedent A is x iff 
, ( )A Lch C x= .

Nomic Requirements: If A holds at w then C is nomically required to hold at 
w iff ,( )A wNR C .

Nomic Forbiddings: If A holds at w then C is nomically forbidden from hold-
ing at w iff ,( )A wNF C .

33. Given this account of complete laws, how do we determine whether a given proposition 
(e.g., a statement of Newton’s gravitational force law) is a law? Presumably a necessary condition 
is that it should be entailed by the complete laws. One might take this to be a sufficient condition as 
well, or one might add various other requirements—that it express a regularity, be appropriately 
general, etc. From the perspective of the Nomic Likelihood Account, this is merely a termino-
logical matter—what really matters, metaphysically speaking, are the complete laws. (In a similar 
vein, there won’t be an interesting distinction to draw between “fundamental laws” and “derived 
laws” on the Nomic Likelihood Account [Johansson 2005; Frisch 2014], since the only plausible 
candidate for a “fundamental” law would be the complete laws.)
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5.3. Some Lemmas Regarding Laws and Chances

The second desideratum discussed in Section 2.1 was that an adequate account 
should yield plausible connections among laws and chances. We can now 
show some of the ways in which the Nomic Likelihood Account satisfies this 
desideratum by describing some further lemmas that follow from the nomic axi-
oms described in Section 4.3, and the account of laws and chances offered in 
Section 5.2. (The numbering of these lemmas starts at 10 because they follow the 
9 lemmas given in appendix A.1. The derivations of these lemmas are given in 
appendix C.)

10. If (given A at w) there’s some likelihood of C, and A entails C, then it 
seems C should be nomically required. E.g., suppose there’s some nomic likeli-
hood of rain (C) given that it’s raining hard (A) at w. Then, given that it’s raining 
hard at w, it should be nomically required that it rains. This is what the tenth 
lemma shows.

Lemma 10: If ,A wC  is in NS, and A entails C, then ,( )A wNR C .

11. It seems like nomic requirements should be closed under entailment. For 
example, if (given A at w) it’s nomically required that it be rainy (C), and nomi-
cally required that it be windy (C′), then it should be nomically required that it 
be rainy and windy (C C∩ ′). This is what the eleventh lemma says.

Lemma 11: For all C in NS: If 1 , , nC C… , entail C, and 1( ), , ( )nNR NR…C C , then 
( )NR C .

12. It seems nomic requirements and nomic forbiddings should be linked: if 
C is nomically required, then C should be nomically forbidden, and vice versa. 
For example, if (given A at w) it’s nomically required that it rain (C), then it 
should be nomically forbidden that it not rain (C), and vice versa. This is what 
the twelfth lemma states.

Lemma 12: ( )NR C  iff ( )NF C .

13. It seems like nomic requirements and forbiddings should be tied 
to the truth. For example, if (given A at w) rain is nomically required, and A 
obtains, then it should rain. Likewise, if (given A at w) rain is nomically for-
bidden, and A obtains, then it shouldn’t rain. This is what the thirteenth  
lemma asserts.
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Lemma 13:

1.	 If ,( )A wNR C  and w A∈ , then w C∈ .
2.	 If ,( )A wNF C  and w A∈ , then w C∈ .

14. It seems nomic likelihoods should be tied to chances. For example, if 
(given A at w) the nomic likelihood of rain is on a par with Ω - or Ω, then the 
chance of rain (given A and the laws that hold at w) should be 1. Likewise, if the 
nomic likelihood of rain is on a par with ∅ + or ∅, then the chance of rain should 
be 0. And if the nomic likelihood of rain is middling, then the chance of rain 
should be greater than 0 but smaller than 1. This is what the fourteenth lemma 
says.

Lemma 14:

1.	 If ,A w C Ω -, then , ( ) 1
wA Lch C = .

2.	 If ,A w C ∅ +, then , ( ) 0
wA Lch C = .

3.	 If ,A w CΩ ∅- +, , ( ) (0,1)
wA Lch C ∈ .

15. It seems related chance distributions should assign chances to the same 
propositions. For example, suppose A and L yield a well-defined chance distri-
bution over a sequence of fair coin tosses. And suppose the conjunction of A and 
the first fair coin toss landing heads (call this conjunction A′) and L also yield a 
well-defined chance distribution. It would be strange if ,A Lch ′  assigned chances 
to coin tosses that ,A Lch  did not assign chances to, or vice versa. Rather, it seems 

,A Lch  and ,A Lch ′  should assign chances to the same propositions. This is what the 
fifteenth lemma says.

Lemma 15: If A A⊃ ′, , ( ) 0A Lch A′ > , and , ( )A Lch ′ Ω  is well-defined, then for all C, 
, ( )A Lch C′  is well-defined iff , ( )A Lch C  is well-defined.

16. It seems related chance distributions should have related chance 
assignments. For example, suppose A and L yield a well-defined chance 
distribution over a sequence of independent coin tosses, and this distribu-
tion assigns a chance of 0.5 to the first coin landing heads (C), and chance 
of 0.25 to the first two coin tosses landing heads (C C∩ ′). And suppose the 
conjunction of A and the first fair coin toss landing heads—i.e., A C∩ —and 
L also yield a well-defined chance distribution. What chance should ,A C Lch ∩  
assign to the first two coin tosses landing heads? Given the chances ,A Lch  
assigns, it seems the right answer is 0.5. This is what the sixteenth lemma  
entails.
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Lemma 16: If A A⊇ ′, and , ( )A Lch C A′∣  and , ( )A Lch C′  are well-defined, then 
, ,( ) ( )A L A Lch C ch C A′ = ′∣ .

5.4. A Toy Example

It can be helpful to see a concrete example of some complete laws wL  on the 
Nomic Likelihood Account. But it’s hard to do so concisely for realistic phys-
ical theories. So I’ll instead present a toy example corresponding to a pair of 
cases discussed in Section 2.1: a pair of worlds in which there’s only one chance 
event, a coin toss, where the chance of heads is 0.6 in one world, and 0.7 in the 
other.

Let A be a proposition describing the state of a world at t consisting of a 
certain coin toss set-up, and let C be a proposition stating that the outcome of 
this coin toss was heads. Let w be a world such that there are only four triples 
indexed to w in , , ,: , ,A w A w A wNS C C∅ , and ,A wΩ . Let ,A wC  be on a par with the tri-
ples in the rich cluster that are assigned a value of 0.6 by the representation and 
uniqueness theorem.

The complete laws of w, wL , will consist of the set of worlds in w’s cell of the 
nomic partition. And these laws describe a world in which there’s almost noth-
ing of nomic interest going on: there’s only a single non-trivial chance event—a 
coin toss—which has a chance of 0.6 of landing heads.

We can also consider a world w′ such that the only triples indexed to w′ in 
NS are: ,A w′∅ , ,A w′C , ,A w′C  and ,A w′Ω . And in this case, ,A w′C  is on a par with the 
triples in the rich cluster that are assigned a value of 0.7. The complete laws wL ′ 
will consist of the set of worlds with the same nomic facts as w′, and these laws 
describe a world in which there’s only a single non-trivial chance event—a coin 
toss—which has a chance of 0.7 of landing heads.

6. The Nomic Likelihood Account and the Desiderata

Now let’s turn to see how the Nomic Likelihood Account fares with respect to 
the five desiderata given in Section 2.1.

Desideratum 1. An adequate account should provide a unified (and appro-
priately discriminating) account of laws and chances.

The Nomic Likelihood Account provides a unified account of laws and 
chances, characterizing both in terms of the nomic likelihood relation (cf. Section 
5.2). Probabilistic and non-probabilistic laws are treated similarly, with the laws 
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that impose nomic requirements just being stronger versions of the laws that 
impose chances. And the Nomic Likelihood Account is appropriately discrim-
inating, distinguishing between propositions that are nomically required and 
propositions that have a chance of 1 but aren’t nomically required.

Desideratum 2. An adequate account should yield plausible connections 
between laws and chances, laws and other laws, and chances and other 
chances.

The Nomic Likelihood Account yields the kinds of relations between laws 
and chances that one would expect (cf. Section 5.3). For example, it entails that 
nomically required propositions are not nomically forbidden, and vice versa; 
it entails that nomic requirements are closed under entailment;34 it entails that 
nomically required propositions will have a chance of 1, and nomically forbid-
den propositions a chance of 0; it entails that chance distributions at the same 
world will be related by conditionalization; and so on.

Desideratum 3. An adequate account should describe what, at the funda-
mental level, makes it the case that chance events deserve the numerical 
values they’re assigned.

The Nomic Likelihood Account provides a satisfactory explanation for why 
chance events deserve the numerical values we assign them. At the fundamental 
level we have various instantiations of the nomic likelihood relation which sat-
isfy certain constraints (cf. Sections 4.1 and 4.3). And we have a representation 
and uniqueness theorem that shows that there is exactly one way of assigning 
numbers in the [0, 1]-interval to propositions so that these assignments line up 
with these nomic likelihood relations (cf. Sections 5.1 and 5.2). Since the Nomic 
Likelihood Account identifies chances with these assignments, it provides an 
explanation for why chance events deserve the numerical values we assign them.

Desideratum 4. An adequate account should be able to accommodate 
both dynamical and non-dynamical chances (like those of statistical 
mechanics).

The Nomic Likelihood Account itself doesn’t appeal to a distinction between 
“dynamical” and “non-dynamical” chances. But we can distinguish between 
different kinds of chances, and see what the Nomic Likelihood Account entails 
about them.

34. Assuming that the entailed propositions bear any likelihood relations at all.
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Here is one way to draw such a distinction. Let’s say that a world w has non-
trivial chances iff there are middling likelihood triples indexed to w. Call these 
chances dynamical iff all of the middling likelihood triples indexed to w have an 
antecedent proposition H describing a complete history up to some time.35 Call 
these chances non-dynamical iff they’re not dynamical.36

Given this characterization of dynamical chances, the Nomic Likelihood 
Account will entail that dynamical chances will have the features they’re expected 
to have. For example, the Nomic Likelihood Account will entail that worlds with 
dynamical chances can’t have deterministic laws. If w has deterministic laws, 
then every likelihood-having triple indexed to w that has a complete history H as 
its antecedent proposition will either be nomically required or nomically forbid-
den (depending on whether H and wL  entail the triple’s consequent proposition 
or its negation). Since none of these triples have a middling likelihood, it follows 
that w can’t have dynamical chances.37

Likewise, the Nomic Likelihood Account will entail that at worlds with 
dynamical chances, propositions about the past can only be assigned a chance 
of 0 or 1. Let w be a world with dynamical chances, H a history up to t, and C 
some proposition about what the world is like prior to t such that ,H wC  has some 
likelihood. By construction H will entail either C or C, from which it follows (by 
lemmas 10 and 12) that ,H wC  is either nomically required or nomically forbidden. 
Thus (by lemma 14) the chance of ,H wC  is either 0 or 1.

By contrast, the Nomic Likelihood Account will allow worlds with deter-
ministic laws to have non-dynamical chances, and so can accommodate classical 
mechanical worlds with statistical mechanical chances. For example, let the laws 

35. Or at relativistic worlds, propositions describing a complete history up to some Cauchy 
slice.

36. Although this is one way to draw the distinction between “dynamical” and “non-dynam-
ical” chances, it is not the only way. A different (and to my mind, equally reasonable) way to draw 
the distinction is to call these chances dynamical iff all of the middling likelihood triples indexed to 
w have an antecedent proposition S which includes a description of the complete state of the world 
at some time. This alternative characterization of “dynamical” chances won’t yield the result that 
propositions about the past can only be assigned a dynamical chance of 0 or 1. Those who hold 
that dynamical chances should only be able to assign propositions about the past a chance of 0 or 
1 (like Lewis 1980) will take this to be a reason to favor the characterization of dynamical chances 
given in the text. Those who want to permit the possibility of future-to-past dynamical chances, 
or even temporally symmetric dynamical chances (like Meacham 2005) will take this to be a rea-
son to favor the alternative characterization just described. In any case, on the Nomic Likelihood 
Account, this is merely a terminological matter. Nothing of substance hangs on our choice about 
which chances to call “dynamical”.

37. On some ways of characterizing determinism, such as Lewis’s (1983), a complete history 
and deterministic laws will only fix the truth of every qualitative proposition, not every proposi-
tion simpliciter. Given this understanding of determinism, the Nomic Likelihood Account will only 
entail that deterministic laws are incompatible with dynamical chances that assign middling likeli-
hoods to qualitative propositions.
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of w be those of classical statistical mechanics,38 let A be the claim that the world 
at t consists of a small isolated system containing uniform lukewarm water, and 
let C be the claim that the world five minutes after t consists of a small isolated 
system containing an ice cube in hot water. wL  and A don’t entail whether C is 
true or not—the laws and the fact that the world consists of uniform lukewarm 
water doesn’t entail that there will be an ice cube in five minutes, nor does it 
entail that there won’t be. So ,A wC  can have a middling likelihood even though 
the laws at w are deterministic.

Likewise, the Nomic Likelihood Account doesn’t require non-dynamical 
chances to assign propositions about the past a chance of 0 or 1. Consider a vari-
ant of the example from above, where w has classical statistical mechanical laws, 
A asserts that the world at t consists of lukewarm water, and C asserts that the 
world five minutes before t consists of an ice cube in hot water. A is compatible 
with both the truth and falsity of C—the world consisting of lukewarm water at 
t is compatible with both there being an ice cube five minutes ago and there not 
being such an ice cube. So ,A wC  can have a middling likelihood, even though C is 
a proposition about the past.39

Desideratum 5. An adequate account should be able to accommodate 
plausible nomic possibilities.

The Nomic Likelihood Account can accommodate a wide range of plausible 
nomic possibilities. For example, since the only kind of consequent proposition 
the account can’t assign nomic likelihoods to are propositions concerning nomic 
facts (Section 4.1), the account allows nomic likelihoods to be assigned to propo-
sitions about particular locations, times, and objects. Thus the account allows 
for laws about particular locations, times, and objects, like the case of Smith’s 
garden discussed by Tooley (1977). Likewise, the account can assign nomic like-
lihoods to triples even if both their consequent and antecedent propositions are 
false (Section 4.3, axiom 8). Thus it can allow for worlds with uninstantiated 

38. Following Albert (2000), we can take these to be the conjunction of Newton’s laws of 
motion, the Past Hypothesis, and the Statistical Postulate.

39. I’m evaluating the claim that “all propositions about the past get a chance of 0 or 1” by tak-
ing the antecedent proposition to pick out a particular time—the earliest time which the proposi-
tion says something about—and taking consequent propositions to be “about the past” if they say 
things about times earlier than that. This way of understanding when propositions are about the 
past yields the result that non-dynamical chances can assign chances other than 0 or 1 to proposi-
tions about the past. A different (and to my mind, equally reasonable) approach would be to main-
tain that the antecedent propositions of non-dynamical chances (like those of statistical mechanics) 
aren’t naturally time-indexed. And claims about whether “all propositions about the past get a 
chance of 0 or 1” simply don’t make sense in the context of non-dynamical chances, since there’s 
no good way of picking out a “now” time that we can use to determine whether a proposition is 
about the past.
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laws, like a world where F ma=  is a law but there are no massive objects. And as 
we saw in Section 5.4, the account can can make sense of a world w with a single 
chance event, a coin toss, where the chance of heads is 0.6, and an otherwise 
identical world w′ where the chance of heads is 0.7.

7. Worries

Let’s turn to assess some worries one might raise for the Nomic Likelihood 
Account.

1. The Ontological Worry: The nomic likelihood relation is a fundamental 
relation defined over propositions and worlds. Characterizing the laws 
in terms of such a relation commits one to having propositions and pos-
sible worlds in one’s ontology.

Reply: First, note that the Nomic Likelihood Account doesn’t require one 
to understand propositions and worlds in a metaphysically heavyweight 
way. For example, one might identify propositions with sets of worlds, and 
adopt a metaphysically lightweight understanding of worlds themselves, 
like the one advocated by Stalnaker (2011).

Second, although I’ve characterized the nomic likelihood relation as taking 
propositions and worlds as relata, one could characterize the relation in other 
ways to avoid these commitments. If one doesn’t like propositions, one could 
replace the appeal to propositions with an appeal to properties, i.e., the property 
of being a world at which the relevant proposition is true. Or one could replace 
the appeal to propositions with an appeal to Chisholm-style states of affairs.40

Likewise, if one doesn’t like worlds, one could replace the appeal to worlds 
with an appeal to propositions, i.e., the maximally specific propositions describ-
ing that possibility. (On this approach, of course, one would not identify propo-
sitions with sets of worlds.) Or one could replace the appeal to worlds with an 
appeal to very detailed properties or states of affairs. These alternative charac-
terizations of the nomic likelihood relation would require only superficial modi-
fications to the details presented in Sections 4 and 5.41

40. See Chisholm (1976).
41. A related complaint is that the account described in Sections 3–5 commits one to taking 

propositions and worlds to be more fundamental than (say) chance events and lawful states of the 
world at a time. But, one might argue, the latter should be more fundamental than the former—for 
example, it’s natural to take chance events to be more fundamental than the propositions describ-
ing them. (I owe an anonymous referee for raising this concern.)

So far I’ve followed Lewis (1983) in taking the fundamental/non-fundamental distinction to 
only apply to properties, not to things like propositions and events. So properly articulating this 
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2. The Explanatory Worry: The Nomic Likelihood Account allows for pairs 
of worlds that, nomic facts aside, are qualitatively identical, and yet 
which differ with respect to their laws. (For example, the pair of worlds 
discussed in Section 5.4.) But it’s hard to see how such an account could 
explain why these worlds differ with respect to their laws, other than 
simply stipulating that different nomic likelihood relations hold of them. 
And that seems little better than being a primitivist about laws.42

Reply: The Nomic Likelihood Account is, indeed, similar to primitiv-
ist accounts of laws in these respects.43 But I don’t take this to be a problem 
for the Nomic Likelhood Account. The complaint I raised in Section 2.2 about 
primitivist accounts like Carroll’s (1994) wasn’t that they took nomic facts to 
be primitive, or that they couldn’t explain why certain laws obtained without 
appealing to nomic facts. After all, pretty much any non-Humean account is 
going to have to appeal to some kind of brute modal or nomic facts. Rather, the 
complaint was that accounts like Carroll’s don’t provide the kind of detailed 
framework needed to satisfy desiderata 2 and 3—to yield plausible connections 
among laws and chances, and to show why chance events deserve the numeri-
cal values we assign them. And this is a demerit the Nomic Likelihood Account 
does not share.

3. The Duplication/Intrinsicality Worry: Following David Lewis (1983), let’s 
say two worlds are DLduplicates  iff there is a bijection between their parts 
that preserves their fundamental properties and the fundamental rela-
tions holding between them. Since the nomic likelihood relation holds 
between a world and things that aren’t a part of that world (i.e., another 
world and several propositions), it won’t play a role in our assessment of 
whether worlds are DLduplicates . Indeed, one world can be a duplicateDL  
of another even if one bears various nomic likelihood relations and the 
other bears no nomic likelihood relations at all. And since the laws of a 

concern would require spelling out a broader account of the fundamental/non-fundamental dis-
tinction. But, putting that aside, I take this concern to be in the same vein as the ontology worry 
described in the text, and to be amenable to the same kind of reply. Just as one can adjust the 
account to fit one’s ontological sensibilities by changing the relata of the nomic likelihood relation, 
one can also adjust the account to fit one’s sensibilities regarding what’s ontologically fundamen-
tal by changing these relata. For example, if we replace the appeal to propositions with an appeal 
to states of affairs, and we take events to be a kind of state of affairs (Chisholm 1990), then we can 
avoid any suggestion that chance events are less fundamental than propositions.

42. I’d like to thank an anonymous referee for bringing this worry to my attention.
43. Indeed, the two-layer version of the Nomic Likelihood Account discussed in worry 3— 

which posits both fundamental first-order “complete law” properties of worlds, and a fundamental 
second order nomic likelihood relation that holds of these properties and propositions— might 
naturally be classified as a form of primitivism (cf. footnote 50).
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world are determined by its nomic likelihood relations, it follows that 
duplicateDL  worlds needn’t have the same laws. This is implausible.

Likewise, following David Lewis (1983), let’s say that a property is 
DLintrinsic  iff it never divides duplicates—any two things that are dupli-

cates either both have this property or both fail to have this property.44 
It follows that the laws of a world aren’t intrinsicDL properties of that 
world. This is implausible.

Reply: To begin, it’s worth noting that an analogous worry arises for a popular 
measurement theoretic account of quantitative properties like mass and charge.45 
This account posits some fundamental relations over objects corresponding to 
each quantitative property—e.g., in the case of mass, a mass ordering and a mass 
concatenation relation—and then use those relations to characterize the quan-
titative structure of that property. Now, note that the up quark and the charm 
quark are identical in every way except for their mass. Since on this account 
these differences of mass are the result of the different mass relations they stand 
in, it follows that the up quark and the charm quark will be duplicatesDL. Indeed, 
given a similar account of other quantitative properties, it will follow that all 
fundamental particles are duplicatesDL. This seems implausible. Likewise, it will 
follow that all of the derivative monadic quantitative properties—e.g., having 

2

2.2 MeV

c
-mass—will not be intrinsicDL. Again, this seems implausible.

There are three ways for the proponent of the Nomic Likelihood Account to 
reply to the worries raised above. These replies mirror the options available to 
the proponents of the popular measurement theoretic account of quantitative 
properties just described. They can (1) challenge the characterizations of dupli-
cation and intrinsicality given above, (2) modify the posits the theory makes, or 
(3) bite the bullet. I won’t discuss the third reply,46 but let’s look at each of the 
first two replies more carefully.

(1) Let’s start by distinguishing between two kinds of relations. First, there are 
relations that only hold between things located at the same possible world; call 
these connecting relations. Spatiotemporal relations are connecting relations—
you can’t be five feet from something located at a different possible world. Sec-
ond, there are relations that can hold between things that are located at different 

44. See Shumener (in press) for some arguments for why we should take laws to be intrinsic. 
Of course, there are various worries one might raise regarding whether Lewis’s account of intrin-
sic properties is fine-grained enough; e.g., see Eddon (2011). But those worries are orthogonal to 
the worries being raised here.

45. For some early and influential accounts along these lines see Krantz, Luce, Suppes, and 
Tversky (1971) and Field (1980). For a survey of this literature, see Eddon (2013b).

46. For a defense of this third reply, see Dasgupta (2013).
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possible worlds; call these non-connecting relations. The more-mass-than relation 
is a non-connecting relation—we can make sense of something at another pos-
sible world having more mass than me.47

Intuitively, qualitative duplicates are perfectly alike “in and of themselves”. 
That is, duplicates must share their monadic fundamental properties. By con-
trast, duplicates need not be alike in how they are connected to other things—
two copies of a book may differ in their spatiotemporal relations to me and still 
be duplicates. That is, duplicates can differ with respect to their fundamental 
connecting relations. But these two truisms leave open the question of whether 
duplicates should be alike with respect to their non-connecting relations. One 
thought is that duplicates must also be alike with respect to their fundamental 
non-connecting relations. So in order for two objects to be duplicates, they must 
not only share their monadic fundamental properties, they must also stand in 
the same kinds of fundamental non-connecting relations—e.g., they must bear 
the more-mass-than relation to the same things.

This suggests an alternative to Lewis’s account of duplication. Let’s say 
that a pair of objects a and b are interchangeable with respect to a relation R iff 

( , , .) ( , , )R a R b… … ↔ … … . So two objects are interchangeable with respect to a 
relation iff whenever that relation holds between the first object and certain other 
things, it also holds between the second object and those same other things. Now 
let’s say that two things a and b are Oduplicates  iff (i) one can form a bijection 
between a’s parts and b’s parts that preserves the fundamental properties and 
fundamental relations between them (i.e., they’re DLduplicates ), and (ii) a and b 
are interchangeable with respect to all fundamental non-connecting relations. 
One might propose that our ordinary notion of duplication is Oduplication .48

We saw above that given a popular measurement theoretic account of mass, 
the up quark and the charm quark will be duplicatesDL. But they won’t be 

Oduplicates . The mass ordering and mass concatenation relations are paradig-
matic instances of non-connecting relations, and the up and charm quarks aren’t 
interchangeable with respect to them. So this alternate account of duplication 
avoids the unpleasant result that the up and charm quarks are duplicates, in the 
ordinary sense.

Likewise, on the Nomic Likelihood Account, two otherwise identical worlds 
with different laws will be duplicatesDL. But they won’t be duplicatesO. The 

47. Lewis’s (1986) conception of possible worlds relies on a distinction of this kind, taking 
possible worlds to be fusions of possible individuals that are related by some chain of connect-
ing relations. Lewis also endorsed a particular conception of connecting relations, taking them 
to consist of all and only those fundamental relations that are ‘spatiotemporal or analogously 
spatiotemporal’ (1986: 76).

48. Or, if one takes our ordinary notion of duplication to be vague, that duplicationO is one of 
the possible disambiguations of our ordinary notion of duplication.
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nomic likelihood relation is a non-connecting relation, and these two worlds 
won’t be interchangeable with respect to it. So given this alternate account of 
duplication, the proponent of the Nomic Likelihood Account can maintain that 
worlds with different laws aren’t duplicates, in the ordinary sense.

Turning to intrinsicality, let’s say that a property is Ointrinsic  iff it doesn’t 
divide duplicatesO. One might propose that our ordinary notion of intrinsicality 
is intrinsicO.49 If this is correct, then proponents of this popular measurement 
theoretic account of mass can maintain that monadic quantitative properties 
(like having 2

2.2 MeV

c
-mass) are intrinsic in the ordinary sense.

Likewise, proponents of the Nomic Likelihood Account can maintain that 
the property of being a world where the laws are L is intrinsic in the ordinary 
sense.

(2) Those who would prefer to keep Lewis’s characterizations of duplication 
and intrinsicality can respond to this objection in a different way.

As we saw above, according to a popular measurement theoretic account 
of quantitative properties, things that differ solely with respect to their quan-
titative properties (e.g., the up and charm quarks) will be duplicatesDL, and 
the derivative monadic quantitative properties (e.g., having 2

2.2 MeV

c
-mass) will 

not not be intrinsicDL . Mundy (1987) and Eddon (2013a) have argued that we 
should avoid these difficulties by modifying the account. In particular, instead 
of just positing one layer of fundamental quantitative properties—fundamental 
quantitative relations that hold between objects—we should posit two layers of 
fundamental quantitative properties—fundamental monadic quantitative prop-
erties instantiated by objects, and fundamental second-order quantitative rela-
tions that hold between these monadic properties. Thus, for example, instead 
of positing fundamental mass-concatenation and mass-ordering relations over 
objects, we can posit fundamental monadic mass-properties (e.g., having 2

2.2 MeV

c
-mass) that hold of objects, and fundamental mass-concatenation and mass-
ordering relations over these monadic mass properties. If we do this, then the up 
and charm quarks won’t be duplicatesDL, and monadic quantitative properties 
(like having 2

2.2 MeV

c
-mass) will be intrinsicDL .

We can avoid the analogous worries for the Nomic Likelihood Account 
presented in Sections 3–5 by modifying it in a similar fashion. Namely, instead 
of positing one layer of fundamental nomic likelihood properties—fundamental 
nomic likelihood relations over worlds and propositions—we can posit two lay-
ers of fundamental nomic likelihood properties—fundamental monadic nomic 
properties instantiated by worlds, and fundamental second-order nomic likeli-
hood relations that hold between these monadic properties and propositions. In 

49. Or more or less our ordinary notion. For some remaining issues that crop up, see Eddon 
(2011), and the references therein.
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this two-layer picture, the monadic properties will intuitively line up with the 
complete laws instantiated by that world, L. And the nomic likelihood relation 
will replace the appeal to worlds with an appeal to these complete laws, where 

( , , , , , )C A L C A L′ ′ ′  holds when C given A if the laws are L is at least as nomically 
likely as C′ given A′ if the laws are L′.50 If we adopt this two-layer version of 
the Nomic Likelihood Account, then otherwise identical worlds with different 
laws won’t be duplicatesDL, and the property of having complete laws L will be 
intrinsicDL , as desired.

4. The Holism Worry: Grant that the laws and chances are intrinsic fea-
tures of the world (cf. worry 3). On the Nomic Likelihood Account, the 
laws and chances will still be holistic features of the world. This contrasts 
with a local picture on which, for example, the chance of a coin toss is 
determined by local features of the coin toss set-up. On this local picture, 
a local duplicate of this coin toss set-up in another world would have the 
same chance of landing heads. On the Nomic Likelihood Account, this 
needn’t be the case.51

Reply: Let’s first get clear on what the distinction between holistic and local 
pictures of laws and chances amounts to. At a first pass, we can take the dis-
agreement to be about whether there are local regions (regions smaller than a 
world) such that any duplicate of these regions, in any world, will have the same 
operative laws and chances. On local pictures there are regions like this: since 
the laws and chances are local features of regions, and a duplicate of such a 
region will share its local features, any duplicate of such a region will be gov-
erned by the same laws and chances. On holistic pictures, like the one provided 
by the Nomic Likelihood Account, there aren’t regions like this: since the laws 
and chances are determined at the world level, and vary from world to world, 
duplicates of local regions in different worlds generally won’t be governed by 
the same laws and chances.

I don’t have any strong intuitions about whether the holistic or the local pic-
ture is correct.52 So I’m inclined to take this to be a case of spoils to the victor—

50. Since this two-layer version of the Nomic Likelihood Account posits a range of fundamen-
tal complete law properties in addition to the fundamental nomic likelihood relation, this account 
might be classified as a form of primitivism about laws. I have no objection to this classification, 
since I don’t think there’s anything inherently problematic about primitivist accounts. What mat-
ters is not whether an account is primitivist, but whether it satisfies the desiderata an adequate 
account of laws should satisfy.

51. I’d like to thank an anonymous referee for encouraging me to address this worry.
52. Some (like Armstrong 1983 and Maudlin 2007) want to allow for worlds where the laws 

and chances differ in different epochs. It’s natural to think that this might be a consideration which 
tells between a local and holistic picture of laws. But both pictures can make sense of such possi-
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we should adopt the picture suggested by the account of laws and chances that 
we independently find most plausible. But I grant that if one is strongly attracted 
to a local picture of laws and chances, then one has a reason to dislike the Nomic 
Likelihood Account.

5. The Wrong Grain Worry: The nomic likelihood relation is fine-grained in 
some respects—for example, it allows us to distinguish between chance 1 
propositions that are nomically required and chance 1 propositions that 
are not. But in other respects it still seems too coarse-grained to capture 
all of the nomic likelihood facts. For example, suppose a point-like dart 
is thrown at a one meter interval, with the probability of it hitting any 
point determined by a bell-curve centered around the 0.5-meter point. 
The nomic likelihood relation will treat the dart landing on the 0.5-meter 
point and the dart landing on the 0.9-meter point as on a par (~∅ +). But 
surely the dart landing on the 0.5-meter point is nomically more likely 
than the dart landing on the 0.9-meter point.

Reply: It’s true that given the version of the Nomic Likelihood Account devel-
oped here, the fundamental nomic likelihood relation won’t be sensitive to such 
facts. But the proponent of this account can explain (and partially vindicate) 
these intuitions regarding more fine-grained nomic likelihood facts.53

For example, it’s true that this account will take the dart landing on the 
0.9-meter point and the dart landing on the 0.5-meter point to be on a par (~∅ +). 
But if we consider arbitrarily small neighborhoods surrounding these points 
(i.e., all points within ± meters), then the nomic likelihood of landing in the 
neighborhood of the 0.5-meter point will be greater than that of landing in the 
neighborhood of the 0.9-meter point. And we can use this fact to explain the 
intuition that the dart landing on the 0.5-meter point is more likely than it land-
ing on the 0.9-meter point.

Likewise, if the probability measure representing the chances is absolutely 
continuous with respect to some other salient (σ -finite) measure, then it follows 
from the Radon-Nikodym theorem that one can define a probability density 
with respect to that salient measure (Billingsley 1995). In the dart case described 
above, the salient measure is length, and we can define the probability density 

bilities. Holistic laws can accommodate such worlds by having laws that assert that regions in dif-
ferent spatiotemporal locations behave differently. And local laws can accommodate such worlds 
by positing different local laws in different spatiotemporal locations.

53. A different response to this objection would be to develop a variant of the Nomic 
Likelihood Account whose axioms provide a representation and uniqueness theorem that yields 
nonstandard probability assignments (e.g., hyperreal valued-probabilities). Although this is an 
interesting avenue for future research, there are some prima facie reasons to be skeptical that 
chances are this fine-grained; see Pruss (2018) and Easwaren and Towsner (2019).
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at each point of the one meter interval of the dart landing there. The probability 
density of the dart landing on the 0.5-meter point will be larger than the prob-
ability density of the dart landing on the 0.9-meter point. And we can use this 
fact to explain our intuition that the former is more nomically likely.54

8. Conclusion

I’ve suggested (Section 2.1) that an adequate account of laws should satisfy five 
desiderata: it should (1) provide a unified account of laws and chances, (2) yield 
plausible relations between laws and chances, (3) explain why we’re justified in 
assigning numerical values to chance events in the way that we do, (4) allow for 
both dynamical and non-dynamical chances, and (5) allow for an appropriately 
expansive range of nomic possibilities. I’ve argued (Section 2.2) that no extant 
account of laws satisfies these desiderata.

In this paper I’ve developed an account of laws, the Nomic Likelihood 
Account (sections 3–5), that satisfies all five desiderata (Section 6). On this 
account, the fundamental nomic property is a nomic likelihood relation. And 
laws and chances are things that encode facts about the web of nomic likelihood 
relations. As I’ve noted, there are various challenges one might raise for this 
account (Section 7). But I think this is ultimately the most attractive account of 
laws and chances on offer.
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54. One might be tempted to construct a second and more fine-grained nomic likelihood rela-
tion in light of such facts, and take this to be the “real” nomic-likelihood relation. I think this 
would be a mistake. For these densities will only be defined with respect to a second measure; so 
at best they’re providing us with something like comparisons of nomic likelihood with respect to 
such-and-such a measure, not comparative nomic likelihoods simpliciter.

A similar obstacle prevents us from skipping over having to posit the Ω - and ∅ + likelihoods, 
and simply distinguishing between chance 0 events that are nomically forbidden and those that 
are not by appealing to whether they have non-zero densities. For again, these densities will only 
be defined relative to some further measure.
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A. Some Lemmas Regarding Nomic Likelihood

A.1. Some Key Lemmas

Lemma 1: For all C in NS, Ω ∅C .

Lemma 2: For all C, C′ in NS, if C C⊆ ′, then C C′.

Lemma 3: For all C′  in NS:

1. If ~∅C , then ~C C∩ ′ ∅.
2. If ~ ΩC , then ~C C∪ ′ Ω .

Lemma 4: For all C′ in NS:

1. If ~∅C , then ~C C C∪ ′ ′.
2. If ~ ΩC , then ~C C C∩ ′ ′.

Lemma 5: ~∅C  iff ~C Ω.

Lemma 6: ~C ∅ + iff ~C Ω - .

Lemma 7: If  C∅ Ω+ -, then +  C∅ Ω -.

Lemma 8: If C C′, then C C′ .

Lemma 9: For all C in NS:

1.	 If ~ ~C C C C∩ ′ ∩ ′′ ∅, and none of the following three conditions hold: 
(i) ~C Ω -, ~ ~C C′ ′′ ∅ +, (ii) ~C ∅ +, ~ ~C C′ ′′ Ω -, or (iii)  CΩ ∅, ~C′ ∅ , 

~C′′ ∅ + , then C C′ ′′ iff C C C C∪ ′ ∪ ′′.
2.	 If ~ ~C C C C∩ ′ ∩ ′′ ∅ , and none of the following four conditions hold: 

(i) ~C Ω -, ~ ~C C′ ′′ ∅ +, (ii) ~C ∅ +, ~ ~C C′ ′′ Ω - , (iii)  CΩ ∅, ~C′ ∅, 
~C′′ ∅ +, or (iv)  CΩ ∅, ~C′ ∅ +, ~C′′ ∅, then C C′ ′′ iff  C C C C∪ ′ ∪ ′′.

A.2. Proofs

While the lemmas in section A.1 are ordered thematically, the proofs are pre-
sented in order of dependence (with later lemmas depending on earlier ones, but 
not vice versa). Most of these proofs implicitly appeal to axioms like 1 and 2 to 
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discharge the existence assumptions of the other axioms they employ; to avoid 
needless clutter, I’ll leave such appeals implicit.

• Proof of Lemma 9: (1) The first part of the lemma is a special case of axiom 5, 
where all of the relevant propositions belong to the same cluster, and C C= ′′. 
(Note that while axiom 5 imposes the condition that , ,~A w A w′ ′C C′′ , which entails 
that ,A wC  is in NS, lemma 5 doesn’t have such a clause since C C= ′′. Thus lemma 
5 needs to explicitly add the existence assumption “For all C in NS”.)

(2) The second part of the lemma follows from the first and the assumption 
that it’s also not the case that (iv)  CΩ ∅, ~C′ ∅ +, ~C′′ ∅ . To see this, sup-
pose that the relevant triples are on a par with the emptyset, and none of condi-
tions (i)–(iv) hold.

First, let’s establish that if C C′ ′′, then C C C C′ ∪ ∪ ′′. If C C′ ′′, 
then C C′ ′′, and since none of (i)–(iii) hold, the first part of the lemma entails 
that C C C C′ ∪ ∪ ′′. Furthermore, C C′ ′′ entails that /C C′ ′′, and since none of 
(i), (ii) or (iv) hold, the first part of the lemma entails that /C C C C′ ∪ ∪ ′′. (The 
conditions change because C′ and C′′ switch places. Conditions (i) and (ii) treat C′ 
and C′′ symmetrically, but condition (iii) does not; condition (iv) is what you get 
when you swap C′ and C′′ in condition (iii).) So if C C′ ′′, then C C C C′ ∪ ∪ ′′.

Second, let’s establish that if C C C C′ ∪ ∪ ′′, then C C′ ′′. If C C C C′ ∪ ∪ ′′, 
then C C C C′ ∪ ∪ ′′, and since none of (i)–(iii) hold, the first part of the lemma 
entails that C C′ ′′. Furthermore, C C C C′ ∪ ∪ ′′ entails that /C C C C′ ∪ ∪ ′′, and 
since none of (i), (ii) or (iv) hold, the first part of the lemma entails that /C C′ ′′. 
So if C C C C′ ∪ ∪ ′′, then C C′ ′′.

• Proof of Lemma 2: Suppose that A B⊇ . Let C B= , C A B′ = −  and C′′ = ∅. Note 
that ~ ~C C C C∩ ′ ∩ ′′ ∅ . Note also that none of conditions (i)–(iii) of lemma 9 
obtain (since in all of them ~/C′′ ∅ ). Thus by lemma 9, C C′ ′′ iff C C C C∪ ′ ∪ ′′, 
i.e., ( )−A B ∅  iff ( )∪ − ∪B A B B ∅  iff A B . Since the left-hand side is true, 
the right-hand side must be true as well.

• Proof of Lemma 1: (1) Since ∅ is a subset of every proposition, lemma 2 
entails that ∅  every proposition. (2) Likewise, since every proposition is a sub-
set of Ω , lemma 2 entails that Ω every proposition.

• Proof of Lemma 3: (1) Since C C∩ ′ is a subset of C, lemma 2 entails that C C∩ ′ 
has to be  to C. Since nothing is ranked lower than ∅ (lemma 1), C C∩ ′ is on 
a par with ∅. (2) Likewise, since C C∪ ′ is a superset of C, lemma 2 entails that 
C C∪ ′ has to be  to C. Since nothing is ranked higher than Ω  (lemma 1), C C∪ ′ 
is on a par with Ω .

• Proof of Lemma 4, part (1): Let ~C ∅, let C′ be an arbitrary proposition, and 
let C′′ = ∅. Since ~C ∅ , lemma 3 entails that ~C C∩ ′ ∅; likewise since ~C′′ ∅, 
it follows that ~C C′ ∩ ′′ ∅. Given this and the fact that none of conditions (i)–
(iii) of lemma 9 hold (since in each of (i)–(iii), ~/C′′ ∅ ), lemma 9 entails that 

C C′′  iff C C C C′′ ∪ ′ ∪ ′. Since ~C C′′ , we know the left hand side is true, so 
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C C C C′′ ∪ ′ ∪ ′ must be true. Since C′′ = ∅, C C C′′∪ ′ = ′ , so ∪C C C′ ′ must be 
true. And since C′ is a subset of C C∪ ′, lemma 2 entails that ∪/C C C′ ′. Thus 

~ ∪C C C′ ′.
• Proof of Lemma 5: First, let’s establish that if ~C ∅, then ~C Ω. If ~C ∅, then 

it follows from part (1) of lemma 4 that ~∪C C C. Since ~∪C C Ω, it follows 
that ~C Ω. Second, let’s establish that if ~C Ω, then C ∅. Suppose for reduc-
tio that ~C Ω, but that ~/C ∅, and thus (given lemma 1) that C ∅. Note that 
C C C∩ = ∩∅ =∅. And, letting C C= , C C′ = , and C′′ = ∅, note that none of condi-
tions (i)–(iv) of lemma 9 hold. Thus lemma 9 entails that C ∅ iff ∪ ∪C C C∅ . 
Since C ∅ is true by supposition, the left-hand side of this bijection must be 
true. But since ~∪C∅ Ω  (by lemma 3), the right-hand side of this bijection must 
be false. By reductio, ~C ∅.

• Proof of Lemma 6: First, let’s establish that if ~C ∅ +, then ~C Ω -. Suppose 
~C ∅ +. Note that either (i) ~C ∅, (ii) ~C ∅ +, (iii) +  C∅ Ω -, (iv) ~C Ω -, or 

(v) ~C Ω. (i),(v): If ~ /C ∅ Ω , then by lemma 5 it follows that ~ /C Ω ∅, contra sup-
position. (ii),(iii): If ~C ∅ + or +  C∅ Ω -, then (since ~C ∅ +) the first part of 
axiom 7 entails that ~∪ C C C Ω, which is impossible since ~∪C C Ω. Thus the 
only remaining option is (iv): ~C Ω - .

Second, let’s establish that if ~C Ω - , then ~C ∅ +. Suppose ~C Ω - . Note that 
either (i) ~C ∅, (ii) ~C ∅ +, (iii) +  C∅ Ω -, (iv) ~C Ω -, or (v) ~C Ω. (i),(v): If 

~ /C ∅ Ω , then by lemma 5 it follows that ~ /C Ω ∅, contra supposition. (iii),(iv): If 
+  C∅ Ω - or ~C Ω -, then axiom 7 entails that ~∩ C C C ∅, which is impos-

sible since ~∩C C ∅ . Thus the only remaining option is (ii): ~C ∅ +.
• Proof of Lemma 7: For reductio suppose otherwise—that  C∅ Ω+ -, but not 

+  C∅ Ω -. For this to be the case, C must be on a par with either ∅, ∅ +, Ω -, 
Ω. If ~ + /C ∅ Ω, then by lemma 5 it follows that ~ /C Ω ∅, contra supposition. If 

~ +/C ∅ Ω -, then by lemma 6 it follows that ~ /C Ω ∅- +, contra supposition. By 
reductio, +  C∅ Ω -.

• Proof of Lemma 8: Suppose for that ′C C .
Note that ( ) ( ) ( ) ( )C C C C C C C C∩ ′ ∩ − ′ = ∩ ′ ∩ ′ − =∅. If it’s not the case that either 

(i) ( ) ~C C∩ ′ Ω -, ( ) ~ ( ) ~− −C C C C′ ′ ∅ +, (ii) ( ) ~C C∩ ′ ∅ +, ( ) ~ ( ) ~− −C C C C′ ′ Ω -, 
or (iii) + ( ) C C∅ ∩ ′ Ω -, ( ) ~−C C′ ∅, ( ) ~C−C′ ∅ +, then by lemma 9 it follows 
that ( ) ( )− −C C C C′ ′  iff ( ) ( ) ( ) ( )− = − =C C C C C C C C C C∩ ′ ∪ ′ ∩ ′ ∪ ′ ′. Since 
the right hand side is true by supposition, the left hand side must be true  
too.

Note also that ( ) ( ) ( ) ( )C C C C C C C C∩ ′ ∩ − ′ = ∩ ′ ∩ ′ − =∅. If it’s not the 
case that either (i*) ( ) ~∩C C′ Ω -, ( ) ~ ( ) ~− −C C C C′ ′ ∅ +, (ii*) ( ) ~∩C C′ ∅ + , 
( ) ~ ( ) ~− −C C C C′ ′ Ω -, (iii*) + ( )∩ C C∅ ′ Ω -, ( ) ~−C C′ ∅, ( ) ~−C C′ ∅ +, or 
(iv*) + ( )∩ C C∅ ′ Ω - , ( ) ~−C C′ ∅ +, ( ) ~−C C′ ∅ , then by lemma 9 it follows 
that ( ) ( )− −C C C C′ ′  iff ( ) ( ) ( ) ( )∩ ∪ − = ∩ ∪ − =C C C C C C C C C C′ ′ ′ ′ ′ . Note that we 
derived the falsity of the left hand side above (we derived that ( ) ( )− −C C C C′ ′  
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is true, which entails that ( ) ( )− −C C C C′ ′  is false). Thus the right hand side 
must be false too. Thus /C C′ , or (equivalently) C C′. So if C C′, then C C′.

We’ve only shown this result, though, in cases where none of (i)–(iii), (i*)–
(iv*) obtain. To establish the result in full generality, we need to show that in 
each of these cases lemma 8 will still hold. So suppose C C′:

(i) Suppose ( ) ~C C∩ ′ Ω -, ( ) ~ ( ) ~− −C C C C′ ′ ∅ +. By lemma 6, ~C C∩ ′ ∅ +. 
And since both C and C′ are subsets of C C∩ ′, it follows from lemma 2 that both 
C and C′ can’t be more nomically likely than ∅ +. Since C has ( )C C′ −  as a subset, 
and C′ has ( )C C− ′  as a subset, lemma 2 entails that both C and C′  can’t be less 
nomically likely than ∅ +. Thus both C and C′  must be on a par with ∅ +, and 
thus ′C C , as desired.

(ii) Suppose ( ) ~∩C C′ ∅ +, ( ) ~ ( ) ~− −C C C C′ ′ Ω -. We can ignore this pos-
sibility, since the latter two assignments are impossible. (If both ( )−C C′  and 
( )−C C′  were a par with Ω -, then by axiom 7 ( ) ( )− − =C C C C′ ∩ ′ ∅  must be on a 
par with Ω -, which is impossible.)

(iii) Suppose ( ) C C∅ ∩ ′ Ω+ -, ( ) ~−C C′ ∅, ( ) ~−C C′ ∅ +. Note that by the 
first part of lemma 4 and lemma 6, ( ) ( ) ( ) ~ ( )− −C C C C C C C C∩ ′ ∪ ′ ∪ ′ ∩ ′ , which 
we know is of middling rank. Note also that ( ) ( ) ( ) ( )C C C C C C C C∩ ′ ∪ − ′ ∪ ′ − = ∪ ′ , 
and by lemma 7 the triple corresponding to its negation ( ) ( )∪ = ∩C C C C′ ′  must also 
be middling. Since ( ) ( )C C C C C= ′ − ∪ ∩ ′ , it follows from axiom 7 that ~ ( )∩C C C′ . 
Likewise, since ( ) ( )C C C C C′ = − ′ ∪ ∩ ′ , it follows from the first part of lemma 4 that 

~ ( )∩C C C′ ′ . Thus ~C C′, and so C C′, as desired.
(i*) Suppose ( ) ~C C∩ ′ Ω -, ( ) ~ ( ) ~− −C C C C′ ′ ∅ +. Since ( )C C∩ ′  is a subset of 

both C and C′, it follows from lemma 2 that both C and C′  must be at least as 
nomically likely as Ω -. Note also that neither C nor C′  can be on a par with 
Ω . (Suppose for reductio that ~ ~C C′ Ω . Then C and C′ would be on a par with 
∅ (by lemma 5). But C and C′  are supersets of ( )C C− ′  and ( )C C′ − , and 
( ) ~ ( ) ~− −C C C C′ ′ ∅ +, so by lemma 2 C and C′ must be at least as nomically likely 
∅ +. But that’s impossible if they’re on a par with ∅.) Thus both C and C′ must 
be on a par with Ω -, and thus C C′, as desired.

(ii*) Suppose ( ) ~∩C C′ ∅ +, ( ) ~ ( ) ~− −C C C C′ ′ Ω - . We can ignore this pos-
sibility, since the latter two assignments are impossible (see (ii), above).

(iii*) Suppose + ( )∩ C C∅ ′ Ω -, ( ) ~−C C′ ∅, ( ) ~−C C′ ∅ +. Since 
( ) ( )C C C C C= ′ − ∪ ∩ ′ , it follows from axiom 7 that ~ ( )∩C C C′ . Likewise, since 
( ) ( )C C C C C′ = − ′ ∪ ∩ ′ , it follows from the first part of lemma 4 that ~ ( )∩C C C′ ′ . Thus 

~C C′, which entails C C′, as desired.
(iv*) Suppose + ( )∩ C C∅ ′ Ω -, ( ) ~−C C′ ∅ +, ( ) ~−C C′ ∅. By swapping C and 

C′ throughout, the reasoning offered for (iii*) above shows that C C′ here too.
• Proof of Lemma 4, part (2): Let C′ be an arbitrary proposition. ~C Ω iff ~C ∅ 

(by lemma 5). It follows from part (1) of lemma 4 that ~C C C∪ ′ ′, which is logi-
cally equivalent to ~C C C∩ ′ ′. It follows from lemma 8 that ~C C C∩ ′ ′.
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B. The Representation and Uniqueness Theorem

This representation and uniqueness theorem can be broken down into three 
steps. First, I’ll show that given the nomic likelihood relation, we can define a 
relation k  that, restricting our attention to the R-algebra posited by axiom 4, sat-
isfies some axioms (which I’ll call the “k-axioms”). As Villegas (1964) and Krantz 
et al. (1971) show, if a relation over an algebra satisfies the k-axioms, then there 
exists a unique order-preserving function from this algebra to the real interval 
[0, 1], and it will be a countably additive probability function. Second, I’ll show 
that given such a countably additive probabilistic representation, we can assign 
a countably additive probabilistic representation to all of the proposition in NS, 
and that this representation is also unique. Third, I’ll show that there’s a unique 
way of assigning NR and NF relations over the propositions in NS. Together, 
these steps establish the theorem.

• Step I(a). Given a nomic likelihood relation that satisfies the axioms given 
in Section 4.3, we can define a coarser relation k  that, restricting our attention to 
the R-algebra, satisfies the following K-axioms required for a countably additive 
probabilistic representation of these relations.

Define k  in terms of  as follows: , ,A w k A w′ ′C C′  iff either (i) , ,A w k A w′ ′C C′ , or 
(ii) , ~A wC Ω -  and , ,~A w A w′ ′ ′ ′C′ Ω , or (iii) , ,~A w A wC ∅  and , ~A w′ ′C′ ∅ +. Intuitively, k  is 
a coarser version of , which is blind to the difference between ∅ and ∅ +, and 
Ω and Ω -.

K-Axiom 1.

1.	 If C is in R, then C is in R.
2.	 If 1 2, ,…C C  are in R, then i=



i C∞
1  is in R.

Proof: Axiom 1 entails that this holds for any cluster in NS, so it holds for R.

K-Axiom 2. k  is a weak order over R. That is:

1.	 k  is connected: for all C and C′ in R, either k ′C C  or kC C′ .
2.	 k  is transitive: for all C, C′ and C′′ in R, if k ′C C  and kC C′ ′′, then kC C′′.

Proof: (1) If  is connected, then it’s trivially the case that k  will be connected 
as well.

(2) If  is transitive, then k  will be transitive as well. To see this, suppose for 
reductio that  is transitive, but k  is not—there’s some C, C′, and C′′ such that 

k ′C C , kC C′′, but k/C C′′. Either (i) C C′ and C C′ ′′, (ii) /C C′ and C C′ ′′, 
(iii) C C′ and /C C′ ′′, or (iv) /C C′ and /C C′ ′′.
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(i) Suppose C C′ and C C′ ′′. Then since  is transitive, C C′′, which 
entails that kC C′′, contra our supposition.

(ii) Suppose /C C′  and C C′ ′′. Then since k ′C C  but /C C′, it follows that 
either (a) ~C Ω - and ~C′ Ω, or (b) ~C ∅ and ~C′ ∅ +. (a) If ~C Ω - and ~C′ Ω, 
then since anything on a par with Ω - will be k  to everything, it follows that 

kC C′′, contra our supposition. (b) If ~C ∅ and ~C′ ∅ +, then since C C′ ′′, 
either ~C′′ ∅ or ~C′′ ∅ +. Either way, since anything on a par with ∅ or ∅ + will 
be k  everything, it follows that kC C′′, contra our supposition.

(iii) Suppose C C′ and /C C′ ′′. Then since kC C′ ′′ but /C C′ ′′, it follows 
that either (a) ~C′ Ω - and ~C′′ Ω , or (b) ~C′ ∅  and ~C′′ ∅ +. (a) If ~C′ Ω - and 

~C′′ Ω , then since C C′, either ~C Ω or ~C Ω -. Either way, since anything on a 
par with Ω - will be k  to everything, it follows that kC C′′, contra our supposi-
tion. (b) If ~C′ ∅ and ~C′′ ∅ +, then since anything on a par with ∅ + will be k  
everything, it follows that kC C′′, contra our supposition.

(iv) Suppose /C C′ and /C C′ ′′. Then since kC C′ and kC C′ ′′, it follows 
that either (a) ~C Ω - and ~C′ Ω, or (b) ~C ∅ and ~C′ ∅ +, and either ( ) ~α C′ Ω - 
and ~C′′ Ω , or ( ) ~β C′ ∅ and ~C′′ ∅ +. But neither (a) nor (b) is compatible with 
either (α) or (β ), so this is impossible.

K-Axiom 3.

1.	 R k RΩ ∅ .
2.	 For all ,R R k RA A ∅ .

Proof: (1) It follows from the first part of axiom 4 that R RΩ ∅ . This entails 
that R RΩ ∅ , and thus that R k RΩ ∅ . This also entails that R R/∅ Ω ; which 
combined with the fact that ~R /∅ Ω -  and ~ +R /Ω ∅  entails that R k R/∅ Ω . Thus 

R k RΩ ∅ .
(2) It follows from lemma 1 that for all ,R R RA A ∅ , which entails that for all 

,R R k RA A ∅ .

K-Axiom 4. For all C, C′, C′′ in NS, if C C C C∩ ′ = ∩ ′′ = ∅, then kC C′ ′′ iff 
kC C C C∪ ′ ∪ ′′.

Proof: As a preliminary, consider the following conditions: (i) ~C Ω -, 
~ ~C C′ ′′ ∅ + , (ii) ~C ∅ + , ~ ~C C′ ′′ Ω -, (iii)  CΩ ∅, ~C′ ∅, ~C′′ ∅ + . Note that 

if any of these conditions hold, then kC C′ ′′ iff kC C C C∪ ′ ∪ ′′. (Call this bicon-
ditional “kiff”.) If condition (i) holds, then the left hand side of kiff is true (since 

~C C′ ′′). And by lemma 2, both C C∪ ′ Ω - and C C∪ ′′ Ω -. Since Ω - is k  
everything, it follows that the right hand side of kiff is true too. For precisely the 
same reasons, if condition (ii) holds then both the right and left hand sides of kiff 
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are true. If condition (iii) holds, then since everything k  ∅ +, the left hand side 
of kiff is true. And since C is middling, ~ ~C C C C C∪ ′ ∪ ′′ (by axiom 7 and the 
first part of lemma 4), and thus the right hand side of kiff is true too.

Now, suppose that C C C C∩ ′ = ∩ ′′ = ∅. To establish K-axiom 4, we need to 
show that if this is the case, kiff will be true. We just saw that if any of conditions 
(i)–(iii) hold, kiff will be true. So we just have to show that if none of conditions 
(i)–(iii) hold, kiff will also be true. By lemma 9, if conditions (i)–(iii) don’t obtain 
then C C′ ′′ iff C C C C∪ ′ ∪ ′′. (Call this biconditional “niff”.) Now, either both 
sides of niff are true, or both are false. We can establish K-axiom 4 if we can show 
that either way kiff will be true.

If both sides of niff are true, then since  entails k , it trivially follows that 
kC C′ ′′ iff kC C C C∪ ′ ∪ ′′.

What if both sides of this niff are false? For the left hand side of niff to 
be false, one of the following three possibilities must obtain: (a) k/C C′ ′′,  
(b) kC C′ ′′ and ~C′ Ω -, ~C′′ Ω, or (c) kC C′ ′′ and ~C′ ∅, ~C′′ ∅ +. For the right 
hand side of niff to be false, one of the following three possibilities must obtain: 
(a*) k/C C C C∪ ′ ∪ ′′, (b*) kC C C C∪ ′ ∪ ′′ and ~C C∪ ′ Ω -, ~C C∪ ′′ Ω, or  
(c*) kC C C C∪ ′ ∪ ′′ and ~C C∪ ′ ∅, ~C C∪ ′′ ∅ +. So both sides of niff being 
false presents us with nine possibilities, and we need to show that kiff will be 
true given each one.

(a&a*): Suppose k/C C′ ′′ , and k/C C C C∪ ′ ∪ ′′. This entails that both sides 
of kiff are false, and thus that kiff holds.

(a&b*): Suppose that k/C C′ ′′, kC C C C∪ ′ ∪ ′′, ~C C∪ ′ Ω -, and ~C C∪ ′′ Ω . 
There are five possibilities to consider: (α) ~C Ω, (β ) ~C Ω -, (γ ) C is middling, 
(δ ) ~C ∅ +, () ~C ∅.

(α) Suppose ~C Ω. Then it follows from lemma 3 that ~C C∪ ′ Ω , contra sup-
position. So this is impossible.

(β ) Suppose ~C Ω -. C is disjoint with C′ and C′′, and thus C′ and C′′ are sub-
sets of C . It follows from lemma 6 that ~C ∅ +, and thus from lemma 2 that C′ 
and C′′ are on a par with either ∅ or ∅ +. Either way, kC C′ ′′, contra supposi-
tion. So this is impossible.

(γ ) Suppose C is middling. It follows that C′′ must also be middling. (For if 
~C′′ ∅ then by lemma 4 C C∪ ′′ wouldn’t be on a par with Ω -; if ~C′′ ∅ + then by 

axiom 7 C C∪ ′′ wouldn’t be on a par with Ω -; if C′′ were on a par with Ω  or Ω - 
then C and C′′ couldn’t be disjoint (since if C and C′′ are disjoint then C C′′ ⊆  and 
so C C′′  (by lemma 2), and since C must be middling (by lemma 7) it follows 
that C′′ Ω -).) For similar reasons, C′ must also be middling.

Now, note that the fact that ~C C∪ ′′ Ω  entails that any triple associated with 
a set of worlds outside of 1S , 2S  and 3S  in figure 1 will be a par with ∅ (by lemma 
5). Since C′ must be middling, and 2 ~S−C′ ∅, it follows from lemma 4 that S2 
must also be middling.
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Since ~C C∪ ′ Ω -, it follows (from lemma 6) that ~C C∪ ′ ∅ +, and since 1S  is 
a subset of C C∪ ′, it follows (from lemma 2) that S1 +∅ . But that, and the fact 
that S2 is middling, entails that S S1 2∪  must be on a par with S2 (by lemma 4 
and axiom 7), and thus that ~C C′ ′′. This entails that ~kC C′ ′′, which contradicts 
the supposition that k/C C′ ′′. So this is impossible.

(δ ) Suppose ~C +∅ . It follows from this, and the fact that ~C C∪ ′ Ω - 
and ~C C∪ ′′ Ω, that C′ and C′′ are on a par with either Ω  or Ω -. (If not, 
then it follows by lemma 4 and axiom 7 that C C∪ ′ and C C∪ ′′ would be 
 -Ω , contra supposition.) Either way, kC C′ ′′, contra supposition. So this is  
impossible.

() Suppose ~C ∅ . It follows from this, lemma 4, and the fact that ~C C∪ ′ Ω - 
and ~C C∪ ′′ Ω , that C′ and C′′ are on a par with either Ω or Ω -. Either way, 

kC C′ ′′, contra supposition. So this is impossible.
(a&c*): Suppose k/C C′ ′′, kC C C C∪ ′ ∪ ′′, ~C C∪ ′ ∅ and ~C C∪ ′′ ∅ +. It 

follows (by lemma 4) that ~ ~C C′ ∅, and thus that ~C′′ ∅ +. But that entails that 
kC C′ ′′ is true, contra supposition. So this is impossible.
(b&(a*)-(c*)): Suppose kC C′ ′′, ~C′ Ω -, and ~C′′ Ω. Since C C′′∩ =∅, it fol-

lows that ~C ∅. So (by lemma 4) ~C C C∪ ′ ′ and ~C C C∪ ′′ ′′. It follows that the 
left hand side of kiff is true iff the right hand side of kiff is true, and thus that kiff 
holds.

(c&(a*)-(c*)): Suppose kC C′ ′′ and ~C′ ∅, ~C′′ ∅ +. C must either (α) be on 
a par with Ω, (β ) be on a par with ∅, or (γ ) be between those two. (α) If ~C Ω, 
then the fact that C and C′′  are disjoint entails (by lemmas 5 and 1) that ~C′′ ∅, 
contra the supposition that ~C′′ ∅ +. So this is impossible. (β ) If ~C ∅, then (by 
lemma 4) ~C C C∪ ′ ′ and ~C C C∪ ′′ ′′, and so the the left hand side of kiff is true 
iff the right hand side of kiff is true. So kiff holds. (γ ) If C is between the two, 
then since ~C′ ∅ and ~C′′ ∅ +, condition (iii) holds, and thus (as we saw above) 
kiff holds.

Figure 1
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K-Axiom 5. There’s no C in R such that (i) kC ∅, and (ii) for any C′ in R such 
that C′ is a proper subset of C, either:

(a)	 ~k′C C,
(b)	 ~kC′ ∅.

Proof: Suppose otherwise for reductio—that there is a C in R such that  
(i) kC ∅, and (ii) for any C′ in R such that C′ is a proper subset of C, either:  
(a) ~k′C C or (b) ~kC′ ∅. First, note that ~k′C C entails that one of the following 
five things must be true: (α) ~C C′ , (β ) ~C ′ Ω  and ~C -Ω , (γ ) ~C′ Ω - and ~C Ω, 
(δ ) ~C′ ∅ and ~C +∅ , or () ~C′ ∅ + and ~C ∅. Second, note that ~kC′ ∅ entails 
that either (ζ ) ~C′ ∅ or (η) ~C′ ∅ + must be true. Third, note that if kC ∅, then 
C +∅ . Since C′ is a subset of C, lemma 2 entails that /C C′ , which rules out 

(β ) and (). And (ζ ) makes (δ ) redundant. So, putting this together, it follows 
that there is a C in R such that (i) C +∅ , and (ii) for any C′ in R such that C′ is 
a proper subset of C, either: (α) ~C C′ , (γ ) ~C′ Ω - and ~C Ω, (ζ ) ~C′ ∅ , or (η) 

~C′ ∅ +. But this is precisely what part 2 of axiom 4 denies. Reductio.

K-Axiom 6. Suppose 1 2, ,C C C , . . . , and =


i iC∞
1  are in R. If for all i, k iC C  and 

+⊆ 1i iC C , then k =


 i iC C∞
1 .

Proof: Suppose that 1 2, ,C C C , . . . , and =


i iC∞
1  are in R, and for all i, k iC C   

and +⊆ 1i iC C . For every i, the fact that k iC C  entails that either  iC C , ~C -Ω  
and ~iC Ω, or ~C ∅ and ~iC +∅ . Thus there are three (somewhat overlapping) 
possibilities: (i) for every i,  iC C  , (ii) for some i, ~C -Ω  and ~iC Ω, or (iii) for 
some i, ~C ∅ and ~iC +∅ .

(i)	 If for all i,  iC C  , then axiom 6 entails that =


 i iC C∞
1  , which entails that 

k =


 i iC C∞
1

(ii)	 If for some i, ~C -Ω  and ~iC Ω, then since 1ji jC C∞
=⊆



, it follows from 
lemma 2 that ~=



i iC∞
Ω1 . Since Ω - k Ω , it follows that k =



 i iC C∞
1 .

(iii)	Finally, suppose that ~C ∅. Since ~C ∅ and for all i, k iC C , it follows 
that for all i,  iC+∅ . It follows from axiom 6 that =



 i iC∞
∅ 1+ . And it fol-

lows from the fact that 1ii iC C∞
=⊆



 and lemma 2 that =


i iC∞
∅1 + , and thus 

~=


i iC∞
∅1 +. Since k +∅ ∅ , it follows that k =



 i iC C∞
1 .

• Step I(b). Consider the condition that , ,( ) ( )A L A Lch C ch C′ ′≥ ′  iff for any w L∈  
and w L′∈ ′, either:

1.	 , ,A w A w′ ′C C′ ,
2.	 , ~A wC Ω - and , ,~A w A w′ ′ ′ ′C′ Ω ,
3.	 , ,~A w w AC ∅  and , ~A w′ ′C′ ∅ +.
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Note that this is equivalent to the condition that , ,( ) ( )A L A Lch C ch C′ ′≥ ′  iff for any 
w L∈  and w L′∈ ′, , ,A w k A w′ ′C C′ . Let’s say that a ch which satisfies this condition 
is order-preserving with respect to k , and order-encoding with respect to .

We’ve established that the nomic likelihood relation over R satisfies k-axi-
oms 1–6. It follows from a result by Villegas (1964) that if this relation satisfies 
k-axioms 1–6, then there is a unique order-preserving function p from the alge-
bra the relation is defined over (R) to the unit interval [0,1], and p is a countably 
additive probability function. (See Krantz et al. 1971: 216.)

Now, strictly speaking p is a function which takes one argument (a triple in 
R), whereas ch is a function of three arguments, each corresponding to an ele-
ment of that triple. But we can uniquely pair each p with a ch function such that 
for all C, A, and w, , ,( ) ( )

wA L A wch C p= C .55 Since there’s a unique order-preserving 
(with respect to k ) function p from R to [0,1] that’s a countably additive prob-
ability function, it follows that there’s a unique order-preserving (with respect 
to k ) and order-encoding (with respect to ) function ch from triples of proposi-
tions corresponding to the elements of R to [0,1], and it’s a countably additive 
probability function.

In what follows I’ll speak loosely of ch as assigning values to triples like ,A wC  , 
and the like, even though this is only strictly true for p, not ch.

• Step II. Now we’ll extend the result from R to any (A,w)-algebra in NS. 
Given a probability function over R, we’ll show that there’s a unique countably 
additive assignment to every triple in NS that is order-preserving with respect 
to k  and order-encoding with respect to . First, we’ll establish that there’s a 
unique assignment that is order-preserving with respect to k /order-encoding 
with respect to . Second, we’ll establish that this assignment is a countably 
additive probability function.

1. Recall that in order for ch to be order-preserving with respect to k /order- 
encoding with respect to , it must be the case that , ,( ) ( )A L A Lch C ch C′ ′≥ ′  iff for 
any w L∈  and w L′∈ ′, , ,A w k A w′ ′C C′ . This entails that in order for ch to be order-
preserving with respect to k /order-encoding with respect to , it must be the 
case that , ,( ) ( )A L A Lch C ch C′ ′= ′  iff for any w L∈  and w L′∈ ′, , ,~A w k A w′ ′C C′ .

It follows from part 3 of axiom 4 that every triple in NS is ~ with a triple in 
R. That entails that every triple in NS is ~k with a triple in R. Thus in order for 
ch to be order-preserving with respect to k /order-encoding with respect to , it 
must be the case that ch assigns to each triple in NS the same value it assigns to 
the triple(s) in R they’re on a park with. Since part 3 of axiom 4 entails that there 

55. Of course, this identification requires it to be the case that for all w, w′ in the same L, 
, ,( ) ( )A w A wp p ′=C C . To see that this is the case, recall that if w and w′ are in the same L, it follows 

from the definition of L that , ,~A w A w′C C , which entails that , ,~A w k A w′C C . And since ps assignments 
line up with k , it follows that , ,( ) ( )A w A wp p ′=C C .
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will be such a ch, and this uniquely identifies what ch must be, and it follows that 
there is a unique ch over all NS that is order-preserving with respect to k /order-
encoding with respect to .

2. Now let’s establish that this ch is a countably additive probability  
function.

The first probability axiom requires that every assignment in NS be positive. 
Since every assignment in R is positive (since ch is probabilistic over R), and 
every assignment in NS is equal to some assignment in R, it follows that every 
assignment over NS is positive.

The second probability axiom requires every ,A wΩ  in NS to be assigned 1. RΩ  
is assigned 1, and by axiom 3 every , ~A w RΩ Ω  and thus every , ~A w k RΩ Ω . Since 
these are assigned the same values, it follows that every ,A wΩ  in NS is assigned 1.

Let’s establish that the third probability axiom is satisfied in two steps, first 
(a) showing that ch is finitely additive, and then (b) showing that ch is countably 
additive.

(a) Let’s start by showing that ch will be finitely additive. So we want to show 
that for any arbitrary (A,w)-cluster containing C and C′ (where C and C′ are dis-
joint), it will be the case that , , ,( ) ( ) ( )

w w wA L A L A Lch C ch C ch C C+ ′ = ∪ ′ .
By part 3 of axiom 4, the rich algebra R contains some RC  and RC′ (where 

C and C′ are disjoint) such that , ~ RA wC C and , ~ RA w′ ′C C  . Assume that none of 
the following conditions obtain: (i) , , ,A w A w A w CΩ ∅ , , ,~A w A w′C ∅ , ~R′C ∅ + , (ii) 

, ~A wC Ω -, , ~ ~RA w′ ′C C ∅ + , (iii) , ~A wC ∅ +, , ~ ~RA w′ ′C C Ω - . (In a moment we’ll 
return to consider cases where one of these conditions does obtain.) Then it fol-
lows from axiom 5 that , RA w C C  iff ,( ) ( )A w R′ ′C C C C∪ ∪   and ,R A wC C  iff 

,( ) ( )R A w′ ′C C C C∪ ∪  .
Since the left hand side of both biconditionals are true, it follows that 

,( ) ~ ( )A w R′ ′C C C C∪ ∪  . We know from above that , ,( ) ( )A L A Lch C ch C′ ′
′=  

iff for any w L∈  and w L′∈ ′, , ,~A w k A w′ ′
′C C . Letting ,R A w= ′ ′, it follows that 

, ,
( ) ( )

w w
A L A L

ch C C ch C C
′′

∪ ′ = ∪ ′  . Likewise, it follows that , ,
( ) ( )

w w
A L A L

ch C ch C
′′

=   
and , ,

( ) ( )
w w

A L A L
ch C ch C

′′
′ = ′ . We’ve established that ch is finitely additive 

over ,R A w= ′ ′, so 
, , ,

( ) ( ) ( )
w w wA L A L A L

ch C ch C ch C C
′ ′ ′′ ′ ′

+ ′ = ∪ ′    . Thus it follows that 
, , ,( ) ( ) ( )

w w wA L A L A Lch C ch C ch C C+ ′ = ∪ ′ .
To derive this result, we assumed that none of the conditions (i)–(iii) 

obtained. Now let’s relax that assumption, and show that it will still be the case 
that , , ,( ) ( ) ( )

w w wA L A L A Lch C ch C ch C C+ ′ = ∪ ′ .
(i) Suppose that , , ,A w A w A w CΩ ∅ , , ,~A w A w′C ∅ , ~R′C ∅ + . But by stipulation, 

, ~ RA w′ ′C C , so it’s impossible for this condition to obtain.
(ii) Suppose that , ~A wC Ω -, , ~ ~RA w′ ′C C ∅ + .
We know R∅  is assigned 0, and by axiom 3 every , ~A w R∅ ∅  and thus 

every , ~A w k R∅ ∅ . Recall that , ,( ) ( )A L A Lch C ch C′ ′= ′  iff for any w L∈  and w L′∈ ′, 
, ,~A w k A w′ ′

′C C . It follows that every ,A w∅  in NS is assigned 0.
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Now, since , , ,~ ~A w k A w k A w′C ∅ ∅+ , it follows that , ,( ) ( ) 0
w wA L A Lch C ch′ = ∅ = . 

Likewise, since , ,~ ~A w k k A wC Ω Ω- , it follows that , ,( ) ( ) 1
w wA L A Lch C ch= Ω = .

It follows from lemma 2 and the fact that ch is order preserving/encod-
ing, that if C C′⊆ , then , ,( ) ( )

w wA L A Lch C ch C′≤ . Since C C C′⊆ ∪ , it follows that 
, ,( ) ( )

w wA L A Lch C ch C C′≤ ∪ . And since ⊆Ω, it follows that , ,( ) ( )
w wA L A Lch C C ch′∪ ≤ Ω . 

Since , ,( ) ( ) 1
w wA L A Lch C ch= Ω = , it follows that , ( ) 1

wA Lch C C′∪ = . Thus if condition 
(ii) obtains, , , ,( ) ( ) 1 0 ( ) 1

w w wA L A L A Lch C ch C ch C C′ ′+ = + = ∪ = . So additivity is not 
violated.

(iii) Suppose that , ~A wC ∅ +, , ~ ~RA w′ ′C C Ω - . By switching C and C′ in the 
argument for condition (ii), we get the result that if condition (iii) obtains, addi-
tivity is still not violated.

(b) Now let’s establish that ch is countably additive.
It follows from a result by Villegas (1964) (see also Fishburn 1986: 342) that if 

(α) a (A,w)-cluster is a σ -algebra, and (β ) ch is a finitely additive probability mea-
sure that is order-preserving with respect to k , and (γ ) k  is monotonically con-
tinuous, then ch is countably additive. Earlier, we used the core axioms to derive 
K-axiom 6, which states that k  is monotonically continuous over R. Note that 
nothing about the derivation depended on the (A,w)-cluster in question being 
R—one can use precisely the same derivation to establish that k  is monotoni-
cally continuous over any cluster in NS. So we can conclude that k  is monotoni-
cally continuous in general.

Since (α) it follows from axiom 1 that every (A,w)-cluster in NS is a σ -alge-
bra, (β ) we’ve established above that ch is order-preserving with respect to k  
and is a finitely additive probability function over every (A,w)-cluster in NS, 
and (γ ) we’ve established that k  is monotonically continuous, it follows from 
Villegas’s result that ch is always countably additive.

• Step III. We’ve established that ch is a unique countably additive probabil-
ity function over the (A,w)-clusters in NS. To conclude the theorem, we just need 
to show that there’s a unique nomic requirement function NR and nomic forbid-
ding function NF such that ,( )A wNR C  iff , ,~A w A wC Ω , and ,( )A wNF C  iff , ,~A w A wC ∅ . 
But that’s trivially done, since we can use those biconditionals to define NR and 
NF. Thus the representation and uniqueness theorem holds.

C. Some Lemmas Regarding Laws and Chances

• Proof of Lemma 10: Suppose for reductio that A logically entails C, and ,A w′C  is in 
NS, but it’s not the case that ,( )A wNR C . It follows (from the representation and 
uniqueness theorem) that , ,~A w A w/C Ω .

It will also follow that , ,~A w A w/C ∅ . To see this, suppose otherwise: that 
, ,~A w A wC ∅ , and thus , ,~A w A wC Ω . Either w A∈  or w A∈/ . If w A∈ , then (by axiom 
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8) w C∈ , which is impossible since A entails C. If w A∈/ , then (by axiom 9) there 
exists a w A′∈  such that , ,~A w A w′ ′C Ω . But then (by axiom 8) w C′∈ , which is impos-
sible since A entails C. Reductio.

Together, these results entail (by lemma 1) that , , ,A w A w A w C∅ Ω . It fol-
lows from axiom 10 that there’s some w A′′∈  with the same laws as w such that 
w C′′∈/ . But this is impossible, since A entails C. By reductio, it must be the case 
that ,( )A wNR C .

• Proof of Lemma 11: Suppose C is in NS. If ( ), , ( )NR NR… nC C1 , then it follows 
(from the representation and uniqueness theorem) that ~ ~ ~… nC C Ω1 . It fol-
lows from lemma 4 that =

n
i iC∩ 1  is also on a par with Ω. Now, if 1 , , nC C…  logically 

entail C, then C is a superset of their intersection, 1
n
i iC=∩ . By lemma 2, it follows 

that C must be at least as likely as =
n
i iC∩ 1  that C must be on a par with Ω. It fol-

lows from the representation and uniqueness theorem that NR(C).
• Proof of Lemma 12: Suppose NR(C). It follows from the representation and 

uniqueness theorem that ~C Ω. Thus ~C ∅ (by lemma 5), and (by the represen-
tation and uniqueness theorem) NF(C). Thus NR(C) entails NF(C).

Likewise, suppose NF(C). It follows from the representation and uniqueness 
theorem that ~C ∅. Thus ~C Ω (by lemma 5), and (by the representation and 
uniqueness theorem) NR(C). Thus NF(C) entails NR(C).

• Proof of Lemma 13: (1) Suppose NR( ,A w′C ) and w A∈ . By the representa-
tion and uniqueness theorem, , ,~A w A wC Ω . By axiom 8, it follows that w C∈ .  
(2) Suppose NF( ,A w′C ) and w A∈ . By the representation and uniqueness theorem, 

, ,~A w A wC ∅ . It follows from lemma 5 that , ,~A w A wC Ω , and thus by axiom 8 that 
w C∈ .

• Proof of Lemma 14: (1) Since the representation theorem assigns chances 
using k , a relation that fails to distinguish between Ω and Ω -, it follows that the 
same chance will be assigned to propositions on a par with Ω and Ω -. It follows 
from the representation and uniqueness theorem that the chance of propositions 
on a par with Ω is 1; thus the chance assigned to propositions on a par with Ω - 
will also be 1.

(2) The representation and uniqueness theorem entails that ch 
is additive, and that for any ,A w NS∈Ω , , ( ) 1

wA Lch Ω = . It follows that 
, , , ,( ) ( ) ( ) ( ) 1

w w w wA L A L A L A Lch ch ch chΩ + ∅ = Ω∪∅ = Ω = , and thus that , ( ) 0
wA Lch ∅ = . 

Since k  fails to distinguish between ∅ and ∅ +, it follows that the same chance 
will be assigned to propositions on a par with ∅ and ∅ +. Thus the chance 
assigned to propositions on a par with ∅ + will also be 0.

(3) It follows from the representation and uniqueness theorem that ch is 
probabilistic, so , ( ) [0,1]

wA Lch C ∈ . It also follows from the representation and 
uniqueness theorem that kC C ′ iff the chance of C is greater than the chance 
of C′. Thus if ,- A w CΩ ∅ + then it can’t be the case that , ( ) 0

wA Lch C = , since 
then , ,( ) ( )

w wA L A Lch C ch= ∅  even though , ,A w A wC ∅ . Likewise, it can’t be the case 



280 • Christopher J. G. Meacham

Ergo • vol. 9, no. 9 • 2022

that , ( ) 1
wA Lch C = , since then , ,( ) ( )

w wA L A Lch C ch= Ω  even though , ,A w A wC Ω . Thus if 
,A w CΩ ∅- +, then , ( ) 0 (0,1)

wA Lch C = ∈ .
• Proof of Lemma 15: Suppose, for reductio, that A A⊃ ′, , ( ) 0A Lch A′ > , and 
, ( )A Lch ′ Ω  is well-defined, but either (i) for some C, , ( )A Lch C′  is well-defined but 

, ( )A Lch C  is not, or (ii) for some C, , ( )A Lch C  is well-defined but , ( )A Lch C′  is not.
(i): Since , ( )A Lch C′  is well-defined, it follows from the representation and 

uniqueness theorem that, for some world w L∈ , ,A w′C  is in NS. And since 
 , ( ) 0A Lch A′ ≠ , it follows from lemma 14 that ,A w /A′ ∅ +, or (equivalently) ,A w A′ ∅ +. 
Given this and the fact that A A⊃ ′, it follows from axiom 11 that ,A wC  is in NS. 
It follows from this and axiom 2 that , ,A w A w′ C C  or , ,A w A w′C C . Thus it follows 
from the representation and uniqueness theorem that either , ,( ) ( )A L A Lch C ch C′ ≥  
or , ,( ) ( )A L A Lch C ch C′≥ . Either way, , ( )A Lch C  must be well-defined, contra supposi-
tion. Reductio.

(ii): Since , ( )A Lch C  is well-defined, it follows from the representation 
and uniqueness theorem that, for some world w L∈ , ,A wC  is in NS. And since 

, ( ) 0A Lch A′ ≠ , it follows from lemma 14 that ,A w /A′ ∅ +, or (equivalently) ,A w A′ ∅ +. 
Given this and the fact that A A⊃ ′, it follows from axiom 11 that ,A w′C  is in NS. 
It follows from this and axiom 2 that , ,A w A w′ C C  or , ,A w A w′C C . Thus it follows 
from the representation and uniqueness theorem that either , ,( ) ( )A L A Lch C ch C′ ≥  
or , ,( ) ( )A L A Lch C ch C′≥ . Either way, , ( )A Lch C′  must be well-defined, contra supposi-
tion. Reductio.

• Proof of Lemma 16: First, let’s establish two preliminary results, lemmas 17 
and 18.

Lemma 17: For every natural number n, there exists a n-equipartition of R.

• Proof of Lemma 17: Call a n-equipartition with respect to k  (instead of ) a 
n-equipartitionk. It follows from a result of Villegas (1964) that if  over an alge-
bra satisfies K-axioms 1–6, then that algebra satisfies the “fineness” and “tight-
ness” conditions (see Krantz et al. 1971: 216 for details, though these details don’t 
matter for our purposes). It follows from a result by Savage (1954) that if an 
algebra satisfies these two conditions (in addition to the other K-axioms), then 
for any natural n, there exists a n-equipartition of that algebra (see Krantz et al. 
1971: 206–7). Thus from the results shown above it follows that for every natural 
number n, there exists a n-equipartitionk of R.

Now, the members of an n-equipartition can’t be on a par with Ω - (if 1n =  
then the set would fail to be exhaustive, while if 1n >  then the set couldn’t be 
mutually exclusive, given lemmas 2 and 6). Likewise, the members of an n-equi-
partition can’t be on a par with ∅ + (since the set wouldn’t be exhaustive—by 
axiom 7, for all n, ~= 

n
i iP∪ ∅ Ω1 + ). Note that if , ~/A B Ω - and , ~/A B ∅ +, then 

kA B iff A B . Thus any n-equipartitionk of R is also a n-equipartition of R.
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Lemma 18: If ,A wC  is in NS, and we know the values of ,( , )A wf n C  for all n, then we 
can identify the unique real number r such that , ( )

wA Lch C r= .

• Proof of Lemma 18: Suppose ,A wC  is in NS. The representation and unique-
ness theorem entails (i) that ch is additive, (ii) that , ( ) 1

wA Lch Ω = , and (iii) that 
, ,~A w A w′ ′′C C  which entails , ,

( ) ( )
w w

A L A L
ch C ch C

′′′
= ′ . It follows from this that the 

chance of each member of an n-equipartition is 1
n , and the chance of the union of 

m members of the n-equipartition is m
n .

It follows from the above that if 10n = , ,( , )A wf n C  yields the first 2 values of 
the decimal expansion of , ( )

wA Lch C . (I.e., “1.0” if 10x = , and “0.x” if 10x < ). More 
generally, note that if 10ln = , ,( , )A wf n C  yields the first 1l +  values of the decimal 
expansion of , ( )

wA Lch C . (I.e., “1.0 0… ” if 10lx = , and “0.x” if 10lx < ).
It follows from this that if we know the values of ,( , )A wf n C  for all n, then 

we can identify the unique real number , ( )
wA Lr ch C= . For by looking at arbi-

trarily fine-grained n-equipartitions, the values of ,( , )A wf n C  allow us to identify 
arbitrarily many places in the decimal expansion of r. And every real number 
will correspond to a unique decimal expansion of this kind. (The relationship 
between decimal expansions and real numbers isn’t quite one-to-one, since, e.g., 
1.0 and 0.9 correspond to the same real number. But the manner of identifying 
decimal expansions using using ,( , )A wf n C  as described above will be unique, 
since it never yields the latter ( 9… ) kinds of decimal expansions.)

Now, this only shows that we can identify the unique real number , ( )
wA Lr ch C=  

if ,A wC  is a member of the rich cluster R, since we’ve only shown that all of the 
relevant n-equipartitions exist in R (lemma 17). But axiom 4 entails that every 
C is on a par with some R′C , and it follows from (iii) above that the numerical 
chance that gets assigned to R′C  must be the same as the chance assigned to C. So 
we can use this technique in R to identify the relevant numerical chances for any 
C in NS.

• Given lemma 18, we can now prove lemma 16 as follows. Suppose A A⊃ ′ 
and , ( )A Lch C A′∣  and , ( )A Lch C′  are well-defined. It follows from the definition of 
conditional probability that , ( )A Lch C A∩ ′  and , ( )A Lch A′  are well-defined, and thus 
(by lemma 15) that , ( )A Lch C A′ ∩ ′  and , ( )A Lch A′ ′  are well-defined. Thus , ( )A Lch C A′ ′∣  
is well-defined as long as , ( ) 0A Lch A′ ′ ≠ . And since , ( ) 1 0A Lch A′ ′ = ≠  (by lemmas 10 
and 14)), it follows that , ( )A Lch C A′ ′∣  is well-defined.

If , ,( ) ( )A L A Lch C A ch C A′ ′ ≠ ′∣ ∣  then , ,

, ,

( ) ( )
( ) ( )

A L A L

A L A L

ch C A ch C A
ch A ch A
′

′ ′

∩ ′ ∩ ′

′ ′≠ . Given lemma 18, we can 
identify the unique real numbers that each of those four terms correspond to, 
and thus identify the real numbers the ratios of these chances on the left and 
right hands sides correspond to, by looking at the values of the corresponding 
f  s for increasingly large ns. If the left and right hand sides differ, then for some 
large enough m, for all n m> , ,

,

( , )
( , )

A w

A w

f n
f n

′

′

C A
A
∩

′  will differ from ,

,

( , )
( , )

A w

A w

f n
f n

C A
A
∩ ′

′ . But (assuming 
neither of the denominators stay at 0 for arbitrarily large n) axiom 12 forbids this. 
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So , ,( ) ( )A L A Lch C A ch C A′ ′ = ′∣ ∣ . And since ch is probabilistic and , ( ) 1A Lch A′ ′ =  (by 
lemmas 10 and 14), it follows that , ,( ) ( )A L A Lch C ch C A′ = ′∣ .

What if either of the denominators of ,

,

( , )
( , )

A w

A w

f n
f n

′

′

C A
A
∩

′
 or ,

,

( , )
( , )

A w

A w

f n
f n

C A
A
∩ ′

′
 do stay at 0 f 

for arbitrarily large n? Then the real number representing these values is 0, and 
, ( )A Lch C A′∣  or , ( )A Lch C A′ ′∣  will be undefined. But as we’ve shown, both of these 

values are well-defined. So this is impossible.
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