
Ergo AN OPEN ACCESS
 JOURNAL OF PHILOSOPHY

https://doi.org/10.3998/ergo.4658 781

Contact: Corey J. Maley <cjmaley@purdue.edu>

Medium Independence and the Failure
of the Mechanistic Account of
Computation
C O R E Y J . M A L E Y
Purdue University

Current orthodoxy takes representation to be essential to computation. However, a
philosophical account of computation that does not appeal to representation would
be useful, given the difficulties involved in successfully theorizing representation.
Piccinini’s recent mechanistic account of computation proposes to do just that: it
couches computation in terms of what certain mechanisms do without requiring
the manipulation or processing of representations whatsoever (Piccinini 2015). Most
crucially, mechanisms must process medium-independent vehicles. There are two
ways to understand what “medium-independence” means on this account; how-
ever, on either understanding, the account fails. Either too many things end up being
counted as computational, or purportedly natural computations (e.g., neural compu-
tations) cannot be counted at all. In the end, illustrating this failure sheds some light
on the way to revise the orthodoxy in the hope of a better account of computation.

The orthodox view of computation has it that “there is no computation with-
out representation” (Fodor 1981: 122). There is more to computation than

this: representations need to be manipulated, processed, or something along
those lines, but representation is necessary. Thus, if an account of computation
is to be complete, we need an accompanying account of representation. Despite
some progress, nobody has yet come up with a complete account of representa-
tion—the orthodoxy remains incomplete.

One way forward is to divorce computation from representation entirely.
If we can characterize computation without relying on representation, then we
ought to prefer such an account: why rely on the frustratingly elusive notion of
representation if we don’t need to? There have been some attempts at projects

https://doi.org/10.3998/ergo.4658
mailto:cjmaley@purdue.edu

782 • Corey J. Maley

Ergo • vol. 10, no. 28 • 2023

along these lines. For example, Egan (2010) has proposed that computation need
only involve mathematical representation, rather than representation more gener-
ally. While not a complete separation, the idea is that a relatively thin notion of
representation can do the job (a criticism of this view can be found in Sprevak
2010). More radically, Piccinini and Bahar (2013) take the view that computation
can be divorced from representation completely.1 In his monograph on the topic,
Piccinini (2015) develops the mechanistic account of computation (henceforth,
MAC), which is then further deployed in Piccinini (2020).2 The central claim of
the MAC is that, while computation often involves manipulating representa-
tions, representation is never a necessary element of computation. All that is
needed to fully characterize computation is that a system have a mechanism of
a particular kind. Thus, if the MAC is successful, we have a promising way to
understand computation without having to worry about whether a successful
theory of representation will ever show up to do the heavy lifting required of
the orthodoxy.

Unfortunately, the MAC does not work as an account of computation. To
show this, I will first review some conditions that any philosophical account
of computation must satisfy, at least according to most parties to the relevant
debates. Next, I will argue that the MAC faces a serious dilemma. It either counts
too many things as computational (by the MAC’s own lights), or it cannot char-
acterize purportedly natural systems (e.g., neural systems) as computational
without presupposing that these systems already are computational. This hinges
on the notion of “medium independence” deployed in the MAC; we will have to
carefully unpack the elements of the account to see the problem. After respond-
ing to some potential objections, I will offer some remarks toward a way to revise
the orthodox account, combining some of Piccinini’s insights with a representa-
tional account of computation that solves these problems.

1. Elements of an Account of Computation

Different authors have presented different desiderata for an account of compu-
tation; most disagreement is not about what is desired, but which account of
computation gets us what we want. In order to motivate further discussion, I
will mention just a few reasonable and (mostly) uncontroversial criteria, which
will then serve as points of departure for further discussion.

1. This idea was originally proposed in Piccinini (2008).
2. There are other mechanistic accounts of computation that attempt to divorce computation

from representation; examples include Miłkowski (2018), Fresco (2014), and Dewhurst (2018). I
will focus here on Piccinini’s version, simply because it is the most well-developed, but the criti-
cisms offered here will likely apply to these accounts as well.

 Medium Independence and the Failure of the Mechanistic Account of Computation • 783

Ergo • vol. 10, no. 28 • 2023

Let us start by accepting that not everything is computational, and that there
is some fact of the matter about whether something is computational or not.3 Not
everyone agrees with these assumptions, of course: Putnam (1988) argues for
the view that everything is a computer (i.e., pancomputationalism), and Dennett
(2008) argues that everything can be viewed as a computer if one so chooses (i.e.,
computational perspectivalism). These views will not be considered here; they
are nonstarters if (like me) you take computational explanation seriously.

Briefly, computational explanation is the practice of explaining a phenomenon
by appealing to the computations some system (literally) performs (Piccinini 2007).
Nearly everything can be simulated computationally: for virtually all sciences S,
one can find a journal, department, or lab doing work in “computational S,” which
very often means developing and running computational simulations of the phe-
nomena studied in S.4 In contrast, a small number of things can be explained via
their ability to literally perform computations. Computer simulations of weather
systems, galaxies, and rock strata erosion patterns are matters of course in con-
temporary science, but scientists do not describe these systems as doing what they
do in terms of the computations those systems literally perform. On the other
hand, scientists do explain neural systems and psychological systems in terms of
the computations those systems perform. Without rejecting pancomputationalism
and computational perspectivalism, these distinctions do not get off the ground.
So, let’s assume that some things compute, some do not, and how to determine
which is which is something we require of an account of computation.

One might wonder: is it really not clear what makes something computa-
tional or not? The computer industry surely knows what a computational sys-
tem is, plus there is an entire discipline known as “theoretical computer sci-
ence.” True on both counts! But this is not enough. Let us start with the second
point. The theory of computation is wholly mathematical, and as such has noth-
ing to say about physical objects at all, let alone which ones compute. What the
theory of computation does tell us is that, once we have decided—via indepen-
dent means— that something is a physical implementation of a certain automa-
ton (e.g., a restricted Turing Machine,5 a finite-state machine, or a pushdown
automata), there are certain limitations to what that system can do qua physi-
cally-implemented automaton. In other words, if you give me what has already

3. I will use the term “computational” to refer to something that performs computations. Yes,
“computer” would be simpler, but I would like to avoid any artifactual connotations that many
have associated with that term.

4. Examples include computational astrophysics, computational geology, and computational
biology. Sometimes the “computational” prefix means other things, such as that big data tech-
niques are used.

5. Standard Turing Machines cannot be physically realized because their “tapes” are
unbounded, so we must physically realize only certain classes of restricted models of computa-
tion, such as linear-bounded automata.

784 • Corey J. Maley

Ergo • vol. 10, no. 28 • 2023

been determined to be a physically-realized automaton (including a specifica-
tion of which physical states correspond to computational states), then I may be
able to use the theory of computation to tell you some things about that physical
system qua computational system. But I cannot use the theory of computation to
tell you whether a given physical system is a computer in the first place. That is
simply not the purview of the theory of computation.

An analogy may help. One might wonder how many clouds are in a particu-
lar part of the sky, or if there is a prime number of individual stones in some part
of a metamorphic rock layer. Why can’t we simply appeal to the part of mathe-
matics that deals with numbers (i.e., number theory) to provide answers to these
questions? Simply put, questions about how to count certain physical things
(if they can be counted at all) are not the purview of number theory, because
they are not mathematical questions. Once we have decided—by independent
means—what to count and how to count them, then we can deploy the resources
of number theory. On their own, however, mathematical theories—including
the theory of computation—have nothing to say (and cannot have anything to
say) about things in the physical world.

The second problem is this: what we know about artifactual computational
systems is not much help in determining which natural systems (if any) are
computational. In principle, computational systems can be made of all kinds
of physical media; there is no in-principle barrier to a neural computational
system. However, the computational systems we create are computational pre-
cisely because we have designed and created them as such. Again, if we are
to take computational explanation seriously, then we need a principled way
to determine which natural systems legitimately, literally compute. As before,
we cannot look to the mathematical theory of computation; yet we also cannot
look to the engineering and design practices that go into constructing comput-
ers. It is also not the purview of these practices to tell us what does and does
not compute.

Hence, we find ourselves in need of a philosophical account of computation.
Which systems are computational cannot be read off the mathematical theory of
computation. And if there are natural computational systems—systems that we
have not explicitly created and designed to be computers—computer engineer-
ing is no help in determining which these are. A satisfactory account of compu-
tation should provide criteria that can be used to make judgments about which
natural systems are computational, while also explaining what makes artificial
systems computational.

Now that the stage has been set, let us evaluate what I take to be one of the
most well-developed accounts of computation on the market today: Piccinini’s
mechanistic account of computation. Although this account tackles the problems

 Medium Independence and the Failure of the Mechanistic Account of Computation • 785

Ergo • vol. 10, no. 28 • 2023

mentioned above head-on, it fails to solve those problems. To be clear, many
good things can be said about this account, and there is much I agree with. How-
ever, disagreement is where much of the research happens in philosophy, so
let’s get to it.

2. Unpacking the Mechanistic Account

The crux of the mechanistic account of computation (again, MAC) is that compu-
tation essentially involves the processing of vehicles in a medium-independent
way, dispensing entirely with the need for representations. Although computa-
tions may involve representations, we can understand computation qua compu-
tation without referring to representations whatsoever. Thus, according to the
MAC, the representations or representational capacities of a system are irrel-
evant to whether or not it is computational.

To evaluate the MAC, we must examine the individual elements of the
account, which is what I will do in this section. Along the way, I will point out
its problematic aspects. Before this, a bit of context is in order. The “mechanis-
tic” aspect of the MAC comes from the neo-mechanistic framework developed
in works such as Bechtel and Abrahamsen (2005), Glennan (2002), Machamer,
Darden, and Craver (2000), and subsequently widely adopted in contemporary
philosophy of science. The development and refinement of the mechanistic view
of scientific explanation is easily one of the most important things to happen in
the philosophy of science in the last few decades. The briefest of overviews is
enough for what follows.

Consider all of the the various phenomena that are candidates for scientific
study. According to the mechanistic view, one subset of these things are explained
by appealing to their underlying mechanisms, where a mechanism is a set of enti-
ties organized in a particular way such that their activities give rise to a phenom-
enon.6 For many sciences, especially the biological sciences, the discovery and
articulation of mechanisms plays an essential role in scientific explanation.

One subset of the mechanisms consists of those that have functions. This is
particularly important for understanding the MAC. All mechanisms have func-
tions in the thin sense of having a causal-role function (Cummins 1975). After
all, mechanisms do things in particular ways. But not all mechanisms have a
teleological function: a purposeful function (roughly speaking). For example,
one might be interested in the mechanism responsible for eye color in humans.

6. Various details about the correct account of mechanisms are debated in the literature, but
those details are irrelevant to the current discussion.

786 • Corey J. Maley

Ergo • vol. 10, no. 28 • 2023

Explaining why certain irises are green might involve appealing to the pigment
found in the stroma of the iris, or the particular alleles responsible for iris col-
oration. This would involve a story about the causal-role functions of the vari-
ous entities and activities that give rise to the green color of the iris. However,
given that there is no purpose to having green eyes (or any other eye color), the
green color of the iris has no teleological function. The mechanisms involved
in eye color have functions only in the sense that they simply play various
causal roles. In contrast, the mechanisms involved in the beating of the human
heart have functions in the sense that the heart’s beating has a purpose: to
pump blood.7

One subset of the mechanisms with functions consists of those that perform
computations (according to the MAC). The general idea is that certain teleologi-
cal functional mechanisms operate on “vehicles” in a “medium-independent”
way (the scare-quoted terms will be defined shortly). This particular kind of pro-
cessing on these particular kinds of vehicles is all that’s required for something
to compute: no further requirement about the presence of information, represen-
tations, or algorithms is needed.

We can now turn to the precise formulation of the account. The centerpiece
of the MAC is an account of physical computing systems; the official specifica-
tion (slightly condensed) is given in Figure 1, adapted from Piccinini (2015: 120–
21). Elements that will be further analyzed are boxed, with arrows to Piccinini’s
initial characterization of each.

Two quick examples will help illustrate the way that the MAC is supposed
to work. First, consider a basic calculator. Why does this count as a physical
computing system? Well, a calculator is a mechanism, and it has teleological
functions. One of those teleological functions is to perform calculations. Are
calculations instances of generic computation? Yes, because there are mappings
from inputs to outputs via internal states that follow a rule, sensitive only to
differences between voltage levels in circuit elements. So how does it perform
these computations? In a typical electronic calculator, this is done8 by appeal-
ing to the Boolean operations performed on circuits with binary values. At this

7. There is another large literature focusing on the proper account (or accounts) of functions.
However, we need not—and cannot—settle that matter here, but only acknowledge the difference
between causal-role functions and richer notions of function.

8. A real explanation of a real calculator would require traversing a few more layers of
abstraction involving how the calculator is programmed, how that program is stored either in
memory or hardwired into the circuitry, and so on, down to the level of the digital logic design. At
this level, the explanation would “bottom out,” because further explanation of how, say, a single
logic gate works would appeal to explanations of electrical current, which are below the level of
explaining something qua computational mechanism. Presently, all we need to do is get a feel for
how the story is supposed to go, so we can set all of these details aside.

 Medium Independence and the Failure of the Mechanistic Account of Computation • 787

Ergo • vol. 10, no. 28 • 2023

level, the functional mechanism is only sensitive to differences between two
voltage levels of the circuits, and follows rules that map inputs (and internal
states) to outputs.

Figure 1 Elements of MAC.

A second example is neural firing. When a neuron’s voltage rises above a cer-
tain threshold (due to, for example, input from other neurons, or experimental
intervention), it will generate a spike, or action potential. Neural spikes are the
basis of much communication between neurons: when a spike reaches the end of a
neuron, it causes neurotransmitters to be released, which in turn serve to generate
electrical inputs to subsequent “downstream” neurons. Why does this count as a
physical computing system? Well, a neuron is a mechanism, and it has teleological
functions. One of those teleological functions is (we assume) to transmit spikes.
Is spike transmission an instance of generic computation? Yes, according to the
MAC, because spike transmission is only a matter of the right kinds of change in
voltage levels, neurotransmitter release is a response to these voltage changes, and
so on. Thus, the relevant functional mechanism is only sensitive to voltage differ-
ences, and it follows rules that map inputs (and internal states) to outputs.

788 • Corey J. Maley

Ergo • vol. 10, no. 28 • 2023

This is how it is supposed to work. Unfortunately, it does not. Either too many
things end up being counted as computational, or we cannot characterize neu-
ral systems (or any other natural system) as computational by appealing to the
MAC. To see why, we need to go through the details of the MAC more carefully.
Let’s start from the bottom and work our way up.

2.1 Rules

According to the MAC, a rule is simply “a map from inputs (and possibly inter-
nal states) to outputs” (Piccinini 2015: 121). Importantly, the mapping need not
be explicitly represented by the system (either as an algorithm to be followed,
or as a set of ordered input-output pairs). However, “it may be given by speci-
fying the relation that ought to obtain between inputs (and possibly internal
states) and outputs,” and “it can be defined in terms of any appropriate kind of
vehicle” (Piccinini 2015: 122). This is a very broad construal of what counts as a
rule, applying to every system that we would generally count as computational,
as well as many others.

Figure 2: An impact rotor sprinkler.

For example, consider the impact rotor sprinkler shown in Figure 2, commonly
used to water lawns. This device follows rules in Piccinini’s sense. In particular,
it maps inputs and internal states to outputs. The input is liquid at a certain
pressure, the internal state is the current position of the nozzle, and the output is
liquid at a certain pressure and velocity. The output of this particular sprinkler

 Medium Independence and the Failure of the Mechanistic Account of Computation • 789

Ergo • vol. 10, no. 28 • 2023

is (approximately) a periodic step function (in angular degrees) for a given input
pressure. Thus, the sprinkler unambiguously satisfies the MAC construal of a
rule. Furthermore, it is defined in terms of a kind of vehicle, namely, fluids of
a certain viscosity, usually water.9 The fact that the sprinkler follows a rule (as
do many other things) should not surprising, nor concerning to the MAC, given
such a broad conception of what counts as a rule.

Now, there is a subtle problem in the MAC regarding vehicles. Despite how
broadly rules are construed, it seems that they must nevertheless be defined in
terms of physical quantities or physical properties. It will not do for a rule to be
given in terms of unit-free abstractions, such as “low” or “high,” or symbols (even
uninterpreted ones) such as “1” and “0.” Rather, the rules have to be defined on
something physical, like “five volts” or “in the range of 4.5 and 5.5 volts.” Why?
Because rules that are not specified in such a way cannot be processed by a phys-
ical, functional mechanism. To do so, we would need an additional ingredient
in the MAC, namely, a mapping from the abstract rules to the physically-speci-
fied rules (or from abstractly-specified vehicles to physically-specified vehicles),
and that additional ingredient is not on offer (and for good reason, given the
attention to physical computation). Now, Piccinini does acknowledge that rules
specified by non-physical digits or symbols can be understood as abstractions
from physical properties, and this move is unproblematic. An example would
be specifying that the abstract rule “change a 1 to a 0” can be understood as the
concrete rule “change a voltage in the range of 4.5–5.5 V to a voltage in the range
of -0.5–0.5 V.”

Despite Piccinini’s claim to the contrary, this elision is quite problematic,
which we will see in more detail soon. For now, note that when it comes to
natural systems, we want to know whether a system computes, and the MAC is
supposed to help us decide. One desideratum of the MAC is “objectivity”: as
characterized by the MAC, whether a system computes or not is supposed to be
as objective a matter as the sound a heart makes (Piccinini 2015: 141). As such,
although we can say that a system designed and built to be a computer may have
rules that are “defined” according to abstract vehicles, such as “high” versus
“low,” there are no such definitions when it comes to natural systems. We can,
of course, ascribe or stipulate mappings between abstractions and physical states
however we want; but that is not the road to objectivity.10 This point becomes
clearest when we consider medium-independence.

9. Of course, other fluids can be used in certain contexts: fire extinguishing chemicals as part
of a fire suppression system in an industrial context, or Brawndo as part of an electrolyte delivery
system in an agricultural context.

10. A point Shagrir (2001) notes (and elsewhere in later writing).

790 • Corey J. Maley

Ergo • vol. 10, no. 28 • 2023

2.2 Medium-Independent Vehicles

According to the MAC, the core ingredient of computation is the processing of
vehicles. So what is a vehicle? A vehicle is either a variable or a value of a vari-
able, which can be understood either purely mathematically or as a physical
state (Piccinini 2015: 121). While this may seem ambiguous, Piccinini points out
that the sense in which “vehicle” is to be understood can be made clear from the
context. However, we must be clear about the commitments in place. Looking
again at the definition of Generic Computation, it must be the case that vehicles
are the kinds of things that can have spatiotemporal parts, implying that they
themselves are spatiotemporal. In a footnote, Piccinini mentions that he takes
“mathematical” in this context to refer to “a (possibly hypothetical) physical
variable” (Piccinini 2015: 121). Thus, vehicles must be either determinable (i.e., a
variable) or determinate (i.e., a value of a variable) physical states.

Next, we must know what counts as a medium-independent vehicle, or the
medium-independent processing of a vehicle.11 According to Piccinini:

a vehicle is medium-independent just in case the rule (i.e., the input-out-
put map) that defines a computation is sensitive only to differences between
portions (i.e., spatiotemporal parts) of the vehicles along specific dimen-
sions of variation—it is insensitive to any other physical properties of the
vehicles. Put yet another way, the rules are functions of state variables
associated with certain degrees of freedom, which can be implemented
differently in different physical media. Thus, a given computation can
be implemented in multiple physical media (e.g., mechanical, electro-
mechanical, electronic, magnetic, etc.), provided that the media possess
a sufficient number of dimensions of variation (or degrees of freedom)
that can be appropriately accessed and manipulated and that the com-
ponents of the mechanism are functionally organized in the appropriate
way. (Piccinini 2015: 122, first emphasis added)

Because of the MAC’s very broad construal of rules, very many systems will
transform inputs to outputs according to rules. But suppose we want to know
whether a particular system has medium-independent vehicles or not. If the rule is
sensitive to only some spatiotemporal parts, but not others, then the vehicles are
medium-independent. The idea is motivated by what we find in an electronic
digital computer. A circuit element will take an input and produce an output

11. In the text, Piccinini mentions both medium-independent vehicles, medium-independent
computational descriptions, and medium-independent processes (which include computations more
generally). It is not clear whether all of these things are medium-independent in the same way or
not, but we can set that aside for now.

 Medium Independence and the Failure of the Mechanistic Account of Computation • 791

Ergo • vol. 10, no. 28 • 2023

based solely on the voltage levels of the input (and possibly internal states). The
other properties of those physical elements, such as their mass, temperature, or
color, are irrelevant: the rule is insensitive to those differences. Moreover, digi-
tal computation is defined in a medium-independent way. “The rules defining
digital computations are defined in terms of strings of digits and internal states
of the system, which are simply states that the physical system can distinguish
from one another. No further physical properties of a physical medium are rel-
evant to whether they implement digital computations. Thus, digital computa-
tions can be implemented by any physical medium with the right degrees of
freedom” (Piccinini 2015: 123).

This is all fine as far as it goes, but things become quite murky when it comes
to examples of natural systems that are supposed to count as physical comput-
ing systems. First we will look at some of the arguments given in Piccinini and
Bahar (2013) and see how those fail. Then we will turn to the structure of the
MAC itself.

Sequences of neural spikes are supposed to be medium independent accord-
ing to the MAC. At first glance, this is puzzling, because neural spike trains have
to do with a very specific physical medium: voltage changes along the axons of
neurons. Polger and Shapiro (2016: 164) put the point nicely: “[T]he frequency of
the spike train of a neuron or neural assembly is part of the first-order descrip-
tion of neurons. It is a property of neurons as neurons, not just as implementers
of some supraneural process.” Nevertheless, here is why we are to believe that
spike trains are medium-independent to begin with:

The functionally relevant aspects of spike trains, such as spike rates and
spike timing, are similar throughout the nervous system regardless of the
physical properties of the stimuli (i.e., auditory, visual, and somatosen-
sory) and may be implemented either by neural tissue or by some other
physical medium, such as a silicon-based circuit. Thus, spike trains—se-
quences of spikes such as those produced by neurons in real time—ap-
pear to be medium-independent vehicles, thereby qualifying as proper
vehicles for generic computation. Analogous considerations apply to
other vehicles manipulated by neurons, such as voltage changes in den-
drites, neurotransmitters, and hormones. (Piccinini & Bahar 2013: 462)

Although presented as support for the idea that neural spikes are medium-
independent, this is all irrelevant. According to Piccinini and Bahar, the first rea-
son we are to count neural spike trains as medium-independent is that they are
“similar throughout the nervous system regardless of the physical properties
of the stimuli (i.e., auditory, visual, and somatosensory).” This is true: sensory
input from different types of stimuli can result in similar neural firing patterns.

792 • Corey J. Maley

Ergo • vol. 10, no. 28 • 2023

For example, neurons in one part of the brain might fire rapidly when a bright
visual stimulus is seen, while neurons in a different part of the brain might fire
rapidly when a loud noise is heard. In each case, the neuron increases its firing
rate as a result of increasing stimulus intensity, even though the stimuli come
from very different sensory modalities. One might even be unable to determine,
in isolation, whether a neuron is firing rapidly because it has received input from
the visual system or the auditory system.

However, nothing about medium-independence follows from this. Remem-
ber, the MAC’s take on medium-independence has to do with the rules and their
sensitivity to certain differences in properties of the vehicles in question (and
insensitivity to other properties). But in the neuron example that Piccinini and
Bahar give, we have a case where the cause or source of the stimuli varies while
the neural response does not. Neural firing caused by visual stimuli in one part of
the brain looks (indistinguishably, at times) like neural firing caused by auditory
stimuli in a different part of the brain. But this has nothing to do with the rules
governing neural firing nor with the properties to which neural firing is or is not
sensitive. By the MAC’s own lights, this is irrelevant to medium-independence.

The second reason we are to count neural spike trains as medium-inde-
pendent is that spike trains “may be implemented either by neural tissue or
by some other physical medium, such as a silicon-based circuit.” Again, it is
true that a silicon-based circuit can instantiate the same rapid voltage changes
(i.e., spike trains) that a given neuron produces; but nothing about medium-
independence follows from this. Rather, this fact simply entails that neural cir-
cuitry is multiply-realizable. Although medium-independence entails multiple-
realizability, it doesn’t go the other way around. A clear example is supposed
to be the corkscrew, which Piccinini cites as an example of something that is
medium-dependent. Importantly, bottle openers and corkscrews are (somewhat
famously) paradigmatic examples of multiply-realizable objects (Aizawa 2009;
Gillett 2003; Polger 2008; Shapiro 2000). Like spike trains, bottle openers can be
implemented by many different types of physical media, even though they are
medium-dependent. So, even by the lights of the MAC, the possibility of imple-
mentation by another physical mechanism—which just is multiple realization—
is not sufficient for medium-independence (Piccinini 2015: 123).

Justifying the claim that neural firing is medium-independent on the MAC
should be much simpler than all this, however. For neural firing to be medium-
independent, all that is required is that the mapping (i.e., the rule) from inputs
to outputs is sensitive only to changes in voltage levels, and no other properties.
This is just what the official specification of the MAC states. And it seems that the
rule from inputs to outputs is, indeed, only sensitive to changes in voltage lev-
els: the Hodgkin-Huxley equations are the perfect example (Hodgkin & Huxley
1952). So, by the lights of the MAC, neural firing is medium-independent.

 Medium Independence and the Failure of the Mechanistic Account of Computation • 793

Ergo • vol. 10, no. 28 • 2023

2.3 A Dilemma

Here is where the MAC faces a dilemma. Recall that the heart of the MAC is
the “processing of vehicles by a functional mechanism according to medium-
independent rules.” When we carefully look at the relationship between rules
and medium-independence, it becomes unclear which is prior.

On one hand, it might work like this. Suppose we determine that a system is
governed by rules; given the liberal construal of rules on the MAC, this is an easy
step. Next, we discover that those rules display the right kind of sensitivity (i.e.,
sensitivity with respect to the relevant vehicles). From this, we are to infer that
those rules are, in fact, medium-independent. This seems to be the right way to
characterize natural systems as computational.

On the other hand, it might work like this. Suppose we already have rules that
are defined in a medium-independent way, as is the case with the rules charac-
terizing various abstract automata. From this, it follows that the rules governing
the physical system must have the right kind of sensitivity (again, with respect
to the relevant vehicles). This seems to be the right way to characterize artificial
systems as computational

Unfortunately, for the MAC to apply to all physical computational systems
(as it purports to do), we have to choose which way to understand the rela-
tionship between medium-independence and the relevant rules. In short: do the
rules give us medium-independence, or does medium-independence give us the
rules? Unfortunately, neither option is appealing. On the first option, too many
things end up being characterized as computation, by the MAC’s own lights. But
on the second option, natural systems can never be characterized as computa-
tional by the MAC.

This is a subtle point, and one that goes unrecognized in the exegesis of the
MAC. We will go through each prong of this dilemma in more detail, walking
through an example of the problem for each. For convenience, let us give labels
to each prong of the dilemma:

Rules-First From the observed sensitivity of the rules governing a physi-
cal system, infer medium-independence.

MI-First Medium-independence is provided by definition, implying that
rules must have sensitivity of the right kind as they apply to the physical
system.

Let us start with Rules-First. We saw in the previous section some attempts
to justify the claim that neural spikes are medium-independent, and that neural
systems are thus computational. Now, neural systems do not come with defini-

794 • Corey J. Maley

Ergo • vol. 10, no. 28 • 2023

tions of the rules they follow (neuroscience would be so much easier if they did),
much less definitions that dictate that those rules are medium-independent. The
rules followed by the system are determined by empirical investigation, and
then we can infer medium-independence if the rules have the right kind of sen-
sitivity. This is the idea suggested in the quotations above from Piccinini and
Bahar (2013: 462), which just is Rules-First. So far, so good.

Figure 3: A cylinder lock.

Consider now a cylinder lock, illustrated in Figure 3. These locks work by
preventing the cylinder from turning (i.e., being locked) unless all of the pins
are in a particular alignment. What puts them in that alignment is the pattern
of different heights of a key. The right heights, in the right order, move the pins
so that they are in line with the cylinder, allowing it to turn, which allows the
lock to open (or to be locked if it is already open). We can take the input to
be a pattern of heights, the internal state to be the setting of the pins, and the
output to be a binary, lock-or-unlock state.12 We have rules; are the vehicles
medium-independent?

Yes, clearly, because the rule from inputs to outputs is sensitive only to dif-
ferences in key-height, and not to any other property (remember the broad con-
strual of “rule”). Keys can be made of different materials, with different colors,
with different temperatures…all that matters is the sequence of heights.13 Key-

12. If we wanted to get fancy, we could say that the relevant mapping is the characteristic
function of sequences of heights: the output is one thing when the input is a member of the right
set, and something else when the input is not a member of the right set.

13. To be sure, there are various background conditions and ceteris paribus issues that can
arise here. The material must be rigid, not too fragile, maybe non-magnetic, not sticky, etc. A
detailed discussion of background conditions would take us too far from the main point, however.
Thanks to an anonymous referee for this point.

 Medium Independence and the Failure of the Mechanistic Account of Computation • 795

Ergo • vol. 10, no. 28 • 2023

heights are definitely vehicles (i.e., physical states), and cylinder locks have the
teleological function to process these vehicles. Putting it all together, cylinder
locks are mechanisms with the teleological function to process these vehicles
according to this medium-independent rule. Therefore, cylinder locks are physi-
cal computing systems.

An immediate objection might be that locks do not have the teleological func-
tion to perform computations, so obviously they are not computational! This is
true in an everyday sense (which is why it’s being used as a counterexample),
but not according to the MAC. Remember, the MAC does not simply stop at say-
ing that physical computing systems are those systems with the function of com-
puting—to do no more than that would be rather vacuous. Instead, the MAC
goes on to precisely specify what computation is, and say that physical comput-
ing systems are the systems that have the function to do that. Thus, the reply to
this objection is simply to note that when we follow the MAC’s specification of
computation, it turns out that cylinder locks do have the function of computing.

Now, if cylinder locks process medium-independent vehicles, so do very
many other artifacts and natural systems. Not all of them, to be sure, but many,
including gear-shifting mechanisms on bicycles, elevators, torque wrenches,
pistols, and the sprinkler mentioned earlier. In each case, there is a rule that
is sensitive only to differences between spatiotemporal parts of vehicles along
specific dimensions of variation; this is enough for medium-independence, and
it follows that the system is computational. This characterization does allow that
digital computers and neural systems are also computational, but that is not
very interesting if so many other things are, too. By Piccinini’s own lights (Pic-
cinini 2015: 145), this is not an acceptable result: the MAC should not count the
wrong things as computing, and this is a lot of wrong things.

The way to escape this result is to go with the other prong of the dilemma:
MI-First. Piccinini mentions rules that are “defined” by a computation at various
points in the discussion of the MAC, which we saw above. This works perfectly
when trying to correctly capture artificial physical computing systems, such as
digital computers. In these cases, we need not rely only on empirical investiga-
tion to know what the relevant rules are. We know what they are by the defini-
tion of those rules; following those rules is the raison d’être of such systems in the
first place. By definition, the rules given in computational descriptions make no
reference to anything physical at all:14 insofar as computational descriptions are
taken to be abstract automata, they cannot refer to anything physical, or else they
would not be abstract automata. Because digital computers are implementations
of abstract automata, and the rules are medium-independent by definition, we

14. There may be exceptions to this for certain types of computational systems, such as analog
ones (Maley 2021).

796 • Corey J. Maley

Ergo • vol. 10, no. 28 • 2023

know that any implementation must use rules with only a certain kind of sensi-
tivity with respect to the vehicles being processed. And here we have MI-First.

The problem is one we already saw: natural systems do not come with defi-
nitions of the rules they follow, let alone whether those rules are medium-inde-
pendent. Neural systems do what they do, and through extraordinary amounts
of scientific work, we have a variety of ways to characterize the voltage changes
in various parts of different neurons; those characterizations show how neural
spikes are rapid changes in voltage, how patterns of neural spikes are produced,
and so on. But at no point do we discover a rule, equation, or anything else with
a definition attached, such that neuron process medium-independent vehicles
because of that definition. Of course, we do characterize neural activity with
equations and the like, but those equations are not defined in such a way that
demands medium-independence (unlike the case of digital computers). It seems
that there is no way a natural system could ever count as a physical computing
system, because natural systems never come with rules that have definitions,
and are thus never medium-independent.

Of course, we can simply stipulate that a neural system is behaving in a way
that corresponds to a medium-independent rule. But that was not the point of
the MAC. We were supposed to be able to use the MAC to decide if those behav-
iors are, in fact, medium-independent, and thus whether the system literally
computes (at least on the MI-First interpretation of this part of the MAC). If we
can simply stipulate medium independence, then the hard work is done: where
we stipulate medium independence, computations are being performed; when
we do not, they are not. But then the MAC has not done the job is was supposed
to do: we are simply giving computational descriptions, and not determining
whether physical systems literally perform computations.

The point here is subtle, and worth repeating. Remember, we are not just
trying to use the MAC to justify why a system that we have already decided, via
independent reasons (including mere stipulation), is computational. Rather,
the MAC is meant to provide criteria that allow us to make the determination
that a system is (or is not) computational in the first place. Moreover, we are
not trying to determine whether a system can be given a mere computational
description, but whether a system literally computes. Very many systems that
do not literally perform computations can be given computational descrip-
tions, a point to which Piccinini (and all other parties to these discussions)
agree.

In the end, neither Rules-First nor MI-First is acceptable. On Rules-First, too
many things count as a computational; on MI-First, natural systems can never
count as computational. Given the centrality of medium-independence to the
MAC, it is unclear how the MAC can be salvaged from this dilemma.

 Medium Independence and the Failure of the Mechanistic Account of Computation • 797

Ergo • vol. 10, no. 28 • 2023

3. Objections and Replies

How might the proponent of the mechanistic account of computation reply to
these examples, and perhaps try to amend the account? Let us look at several
options that are not on the table. First, the account is supposed to be general
enough that it includes digital computation, analog computation, and possibly
other, sui generis species of computation. In order to maintain this generality, we
cannot add restrictions on the kinds of vehicles that are allowable. One might
think, for example, that a sprinkler does not compute because the fluids that are
“processed” by a sprinkler are neither discrete nor digital,15 but continuous. But
continuous vehicles are explicitly allowed on the MAC in order to accompany
“analog” computers.16 So we cannot restrict vehicles in this way.

Second, it might seem that we would want to restrict computational systems
to those that explicitly follow rules, rather than merely act in accordance with
them. However, that would exclude many natural systems that we might want
to count as computational—another desideratum of any reasonable account of
computation. Neural systems, for example, may well act in accordance with
rules, even though these rules are not explicitly represented “in” the neurons.17
Furthermore, many examples of both digital and analog computers are not
stored-program computers, but in a sense “hard-wired” to do what they do, and
thus fall on the side of being rule governed rather than rule following. Neverthe-
less, these are paradigmatic computational systems. We cannot use rule follow-
ing versus governance as a mark of the computational.

Third, we cannot lift the restriction that computational systems are only
those systems that have a particular function (namely, the function of comput-
ing). Again, as Piccinini rightly notes, we can give a computational description
of virtually anything we want; hence the utility of computational simulations
of, say, hurricanes and galaxies. However, the fact that a system can be compu-
tationally described or simulated does not warrant any claims about the simu-
lated system literally performing computations. Hurricanes and galaxies do not
have the function of computing, so they are not supposed to count as computers.
Without the restriction that a system has the function of computing—and not just
that the system is computationally describable—too many things will count as
computational.

15. “Discrete” and “digital” are not synonymous, as argued in Maley (2011).
16. Maley (in press) provides examples of discontinuous analog computers, arguing that ana-

log computation need not be continuous.
17. Depending on one’s point of view, it may be difficult to provide an account of rule-follow-

ing that allows for anything other than rational agents to follow rules (à la Wittgenstein). About
this point I cannot speak further, therefore I will be silent.

798 • Corey J. Maley

Ergo • vol. 10, no. 28 • 2023

The only thing left is to object to the claim that the rules that things like
sprinklers and cylinder locks follow (and the vehicles they operate on) really
count as medium-independent. Note first that there is something right about
the importance of medium-independence to computation: it is true that com-
putation is, in some sense, medium-independent.18 A single computational sys-
tem can be implemented in many different physical media. Conversely, there is
something right about the incompatibility of medium-dependence and computa-
tion: it is true that the specification of a particular chemical reaction is medium-
dependent, and no reasonable account of computation should count the burn-
ing of methane (CH4 + 2 O2 → CO2 + 2 H2O) as a computation. So, perhaps the
MAC proponent can argue that the movement of a fluid is not an instance of the
medium-independent processing of a medium-independent vehicle, as would
be required if the sprinkler is indeed a physical computing system.

But here’s the problem. Medium-independence is a property of computation
when it comes to computer science and mathematics, because the way that com-
putation is characterized in these fields is necessarily abstract. The subject mat-
ter of theoretical computer science includes only abstract mathematical entities,
such as Turing Machines and various other automata. Furthermore, the vari-
ous results of theoretical computer science are similarly abstract. That the time
complexity of a particular algorithm is O(N log (N)) tells us nothing about the
actual time that the algorithm will take. Rather, this tells us it will take a certain
number of abstract “steps” as a function of the size of the input, where steps are
understood as a series of individual members of a set. Of course, we can use this
information to determine the time an algorithm will take to run relative to the
actual amount of time a single step takes.19 Nevertheless, entire theory of com-
putation is simply a branch of mathematics, and like all mathematics, it is devoid
of physical content.

However, when we move to physical computing systems, it is difficult to see
how to rule out certain physical processes (like the sprinkler and cylinder lock)
while ruling in certain other physical processes (like neural systems and digital
computers) according to the MAC’s characterization of medium-independence.
A genuine physical computing system is always dependent on some particu-
lar medium in some particular way. Abstract automata are not dependent on
any physical media whatsoever, and so are completely medium independent;
we but when we move to physical systems, we have to weaken what medium-
independence could mean. That, of course, is precisely what Piccinini’s account
of medium-independence attempts to do: medium-independence is a matter of

18. But not in all instances, as argued in Maley (2021).
19. In extreme cases, we know that algorithms with certain time complexities are absolutely

intractable, given large enough inputs and coupled with certain assumptions about the lower
physical limits a “step” can take.

 Medium Independence and the Failure of the Mechanistic Account of Computation • 799

Ergo • vol. 10, no. 28 • 2023

dependence on some (but not all) spatiotemporal—that is, physical—properties.
The unintended consequence is that very many things count as medium-inde-
pendent, as we have seen in the Rules-First prong of the dilemma above. We
can, of course, simply stipulate that some processes are medium-independent
and others are not, perhaps because of independently-given definitions of com-
putation. However, we then get the result of the MI-First prong of the dilemma.

Here is yet another way to put this point. The MAC needs to be able to char-
acterize neural systems as computational, but characterize cylinder locks as non-
computational. In order to do that, the vehicles processed by neural systems need
to be medium-independent, but the vehicles processed by cylinder locks need to
be medium-dependent. But remember: medium-independence just requires that
not all of the properties of the vehicles are relevant to their processing: for neural
systems (by hypothesis), the relevant property is voltage, but not color, tempera-
ture, etc. However, this is also true of the cylinder locks: the relevant property is
height, but not color, temperature, etc. There is no criterion by which we can say
the one system does, but the other does not, use medium-independent vehicles.

A more interesting example (at least given the extant dialectic of what does
and does not count as a computing system) is the Watt governor, made famous
by van Gelder (1995). According to the MAC, this device is an example of some-
thing that is not computational, but simply a control system. The reason given is
(again) puzzling, because it has to do at least in part with transduction: “a system
may exert feedback control functions without ever transducing the signals into
an internal medium solely devoted to computing—that is, without any medium-
independent processing” (Piccinini & Bahar 2013: 458).

We will set aside the issue of transduction for now, because that is not part
of the official, explicated version of the MAC.20 Does the Watt governor follow
rules in the generic sense of the mechanistic account of computation? Yes, and
that much is easy, as we have seen. Are the vehicles medium-independent? Yes,
because the rule that maps inputs to outputs only has to do with the rotational
speed or angle of the different components of the mechanism, and not their tem-
perature, color, or chemical composition. If the claim that neural systems are
medium-independent is justified by appealing to the Hodgkin-Huxley equa-
tions describing voltage change (where it is, specifically, voltage that is supposed
to be the medium-independent vehicle), then the claim that the Watt governor

20. There may be some sense in which transduction turns out to be important for the account
of medium-independence on the mechanistic account of computation. However, granting that
transduction is necessary for computation seems dangerously close to admitting that represen-
tations are necessary for computation, the rejection of which is crucial to the MAC. Perhaps an
account of why transduction is necessary for computation such that transduction does not amount
to a representation of inputs or outputs can be given, but I will leave that task (and the subsequently
necessary amendment to the official story) to the defender of the MAC.

800 • Corey J. Maley

Ergo • vol. 10, no. 28 • 2023

is medium-independent must also be justified by appealing to the equations
describing its angle and rotation (where it is, specifically, angle and rotation that
are the medium-independent vehicles).

Perhaps another way to defend the MAC is to focus on the function of the
mechanism in question. The work of restricting which rules count is, it seems,
supposed to be done by the requirement that the system in question has a par-
ticular function. Raindrops collected in a pothole may also follow a medium-
independent rule, but there is no computation in sight because potholes collect-
ing rain do not have teleological functions.21

Unfortunately for the MAC, however, the sprinkler and the Watt governor do
have the function of processing their (according to the MAC) medium-indepen-
dent vehicles according to rules. Although rule-following is easy, satisfying the
functional requirement is more difficult, because many physical processes are
not the result of the action of a functional mechanism. However, many functional
mechanisms act on vehicles in such a way that only some spatiotemporal prop-
erties of those vehicles (and not others) are relevant to the input-output behavior
of the mechanism. Again, it would be too much to say that everything does (e.g.,
specific chemical reactions are probably counterexamples). But many functional
mechanisms are medium-independent in just the way the MAC requires (e.g.,
torque wrenches, lamps, sprinklers, cylinder locks, and a whole host of other
artifacts), and thus count as physical computing systems.

Finally, a proponent of the MAC might argue that some physical computa-
tional systems (or at least some programs), such as compilers, parsers, and sort-
ers, do not process representations.22 Given that accounts of computation that
rely on representations cannot accommodate these clear (and core) examples
of computation, we ought to adopt the MAC. However, upon closer inspection,
these programs must process representations, or else they would not be compil-
ers, parsers, or sorters.

Consider a compiler. At a very abstract level, compilers simply take a set of
strings as input and produce as output another set of strings (this is what all soft-
ware does, considered abstractly enough). More concretely, however, compilers
take code written in a high-level language and produce assembly code: crucially,
however, those strings are representations. An input string, such as

printf(“Hello, world!\n”);

represents an instruction in the high-level programming language C; the corre-
sponding lines of assembly code produced as output represent instructions for

21. Of course, a pothole collecting rain could be used as a rain gauge, and thus might, in some
loose sense, be assigned a function. But this is beside the present point.

22. Thanks to an anonymous referee for raising this point.

 Medium Independence and the Failure of the Mechanistic Account of Computation • 801

Ergo • vol. 10, no. 28 • 2023

the relevant instruction set architecture. If the input and output did not represent
instructions, then this would simply not be a compiler.23

Now one might worry that these are not representations of the right type,
because they represent states or commands internal to a particular computing
system, rather than something external. Considered very loosely, even abstract
automata have states that “represent,” because they must refer to other states
within the system, and the MAC allows for this minimal type of representation.
But this would be a misunderstanding of how compilers (and similar programs)
work. A compiler running on computer A can take as input code written on
computer B, and produce assembly code for computer C. There is nothing that
requires the input to represent anything internal to the system itself. The output
must refer to states and instructions in some type of system, but nothing requires
that those states and instructions are the very ones on which a compiler is run-
ning. The compiler that takes the C++ string above as input certainly does not,
itself, need to have the command to print the string “Hello, world!”

Space prohibits further elaboration, but similar points can be made about
parsers and sorters as well. In the main, however, even if we assume that there
are a few cases that the MAC correctly classifies where other accounts fail, there
are still many other cases (torque wrenches, sprinklers, cylinder locks, etc.) that
the MAC fails where others get it right. Until the latter problems are solved, this
is not a point at which the MAC’s benefits outweigh its drawbacks.

4. Sketching a Way Forward

It may well be that a successful philosophical account of computation counts—
or does not count—certain things as computational systems in unintuitive ways.
If the account is otherwise satisfactory, then the occasional clash with intuition is
the price we pay for progress. However, the price to pay for adopting the MAC
is much too high, because of the dilemma mentioned in Section 2.3. My own
view is that the orthodoxy is largely correct, but needs some additional work.
In short, a version of the orthodox view—that representation is necessary for
computation—allows us to articulate exactly why the sprinkler is not a physi-
cal computing system: it is not a computing system because it does not process
representations. However, in the right context, this kind of mechanism could
be a computing system, if its vehicles were, in fact, representations. Moreover,
 Piccinini is correct to focus on mechanisms; we simply need to couple a version
of the mechanistic view with a version of the orthodox view. Fully developing

23. Note that any compiler worth its salt will produce an error message as output if it is given
input that is not a well-defined set of instructions.

802 • Corey J. Maley

Ergo • vol. 10, no. 28 • 2023

this account will have to wait for another day, and Shagrir (2022) has offered an
excellent defense of a version of the orthodox view in light of challenges from
competitors (including Piccinini). Here I will mention a few of my own points
that I hope to develop in future work.

What unifies physical computing systems of all kinds is that they are mech-
anisms: Piccinini has done the field a great service by articulating this point.
Although we cannot characterize computational systems correctly without
appealing to representations, we can couple the mechanistic view with a version
of a semantic view to yield what I will call (for now) the representational view.
On this view, physical computing systems are those systems with mechanisms
that process physical representations, where the mechanism is sensitive only to
the properties of the representations that are responsible for doing the represent-
ing. In digital computers, for example, it is the voltage of circuit elements that
does the representing, so the mechanism doing the processing must be only sen-
sitive to voltage (and not temperature, color, mass, etc.). In a neural system, the
mechanism must be sensitive only to whatever the relevant property happens to
be (e.g., voltage change).

This view will face many of the challenges that semantic views face. One
challenge is to provide a satisfactory account of representation, given the heavy
lifting that representation does in the account. On the other hand, some version
of the semantic view of computation is the one that many psychologists, neu-
roscientists, and other cognitive scientists take as a starting point. For example,
von Eckardt (1993) takes the manipulation of representations to be one of the
basic capacities of computation as understood by cognitive science. Koch (1999:
1) states that, when the brain computes, he means that it “takes the incoming
sensory data, encodes them into various biophysical variables, such as the mem-
brane potential or neuronal firing rates, and subsequently performs a very large
number of ill-specified operations, frequently termed computations, on these
variables to extract relevant features from the input.” Perhaps one can interpret
the encoding of data in such a way that it does not result in a representation, but
I do not see how. A final example is London and Häusser (2005: 504), who state
“Brains compute. This means that they process information, creating abstract
representations of physical entities and performing operations on this informa-
tion in order to execute tasks.” Obviously the fact that a variety of researchers
endorse a representational view is not a knock-down reason to accept it. But in
the absence of a compelling reason to adopt an alternative view, it is prima facie
evidence in its favor.

Another challenge is that some things that are supposed to be examples of com-
putational systems do not appear to traffic in representations at all. We mentioned
compilers and parsers above, but those are not good examples. Better examples
include the many computable functions defined with respect only to an alpha-

 Medium Independence and the Failure of the Mechanistic Account of Computation • 803

Ergo • vol. 10, no. 28 • 2023

bet that has no associated representation; showing that a given function is com-
putable using such an alphabet, relative to some particular type of automaton, is
standard fare in virtually every computability theory textbook. As such, there are
many abstract automata that do nothing more than turn a meaningless (but well-
defined) string of symbols into some other meaningless (but well-defined) string of
symbols. If such a system is physically implemented, mechanistic accounts would
count it as computational, whereas semantic accounts would not. In fact, Piccinini
uses the Turing Machine as a paradigm example of a computational system. The
vast majority of Turing Machines do not traffic in anything representational; they
simply compute a computable function. Although classifying Turing Machines
as computational seems to be a point in favor of the MAC (and against semantic
views, which do not classify them as such), this is a mistake, due to a subtle confu-
sion between computability and (physical) computation.

There is enough to say about this point to fill at least another essay; a sketch
will have to do for now. To put it simply, my own solution, as well as that offered
by Shagrir (2022), is to bite the bullet and claim that not everything that is a
physical implementation of an abstract automaton (such as a Turing Machine)
is a computational system. Rather, only those physical systems that process rep-
resentations are candidates for computational systems (and only those systems
that process representations in the right way actually are computational sys-
tems). Moreover, it is simply a category mistake to think that Turing Machines
themselves are computational systems; Turing Machines (and all other abstract
automata) are abstract mathematical objects that cannot do anything at all, let
alone compute. Setting that aside, physically implementing an abstract automa-
ton does not guarantee that you get a computational system: for that, you need
the system to traffic in representations, too (Shagrir 2022).

In brief, the reason for this is that I take it to be a conceptual fact about com-
putation that every computation is a computation of something, where the “of
something” is defined in terms of representations and how they are processed.
Historically, this is what was meant by computation as performed by human
computers, the very people whose activity the Turing Machine was meant to
model. Interestingly, the Turing Machine does many things which are “com-
putable,” but, if done by a human, would never have counted as computations
(or the result of computations). For example, although a person could system-
atically manipulate meaningless strings of meaningless symbols into different
meaningless strings of meaningless symbols—similar to how many computable
functions are defined—there is nothing that this activity would be a computa-
tion of. A person engaged in this activity would not be computing anything at
all. Computing machines—both digital and analog, from abaci and the Antiky-
thera mechanism to contemporary digital computers—were explicitly created
to manipulate representations. Using a computing machine just meant using a

804 • Corey J. Maley

Ergo • vol. 10, no. 28 • 2023

machine to manipulate representations in ways that are faster and more accurate
than what a person could do alone.

As it turned out, studying Turing’s mathematical model of what a human
computer could do (as well as other models of computation, such as the work of
Church [1936], Post [1936], and many others) became quite interesting in its own
right as a branch of mathematics. In a real sense, the class of things that a Turing
Machine could “compute” (i.e., the computable functions) outstrips the class of
things that would count as performing a computation were a human to do them.
In short, there are many computable functions that, if physically implemented,
would not be computations. This is not as absurd as it sounds, given that “com-
putable” is a mathematical predicate, applicable to certain mathematical func-
tions, and “computation” is an activity that existed long before any particular
mathematical model of that activity, including Turing Machines or any other
automata. Again, however, the full view must wait for another time.

At the same time, certain types of computation, such as analog computa-
tion, are simply not amenable to analysis via Turing Machine (or other abstract
automata). The MAC is intended to capture analog computation, but fails to do
so. Like most discussions of analog computation, Piccinini (2015) takes analog
computers to be distinguished by their use of continuous variables; however,
analog computers often used discrete variables, yet were distinct from digital
computers (Maley 2023). The right way to characterize analog computers is via
their use of analog representation; a distinction between continuous and discrete
is not sufficient (Maley 2011). Of course, appealing to representational types is
not an option for the MAC. But for the representational account sketched here,
this is quite straightforward.

Even worse for the MAC is that many analog computing elements are func-
tionally identical to other mechanical and electronic components in non-com-
puting systems, but are distinguished by the fact that in one context they manip-
ulate representations, and in another they do not. For example, differential gears
have been used in virtually all automobiles for more than a century, as well as in
many industrial contexts. In cars and trucks, these gears allow drive wheels on
opposite sides of the vehicle to rotate at different speeds while the vehicle turns.
But in mechanical analog computers, these devices were used to perform arith-
metic operations on variables.

The MAC does not have the resources to correctly characterize this part of a
mechanical analog computer while not simultaneously counting all mechanical
differential gears as computing, unless we have already independently stipulated
that one is a computer and one is not (i.e., the MI-First prong of the dilemma).
Just as with the example of the cylinder lock, this device is a mechanism that is
sensitive to only one property of its vehicles (thus medium-independent), oper-
ating according to a rule, and it has the function of doing exactly that. Similarly

 Medium Independence and the Failure of the Mechanistic Account of Computation • 805

Ergo • vol. 10, no. 28 • 2023

for analog computers. The only difference is that in analog computers, the rota-
tion represents the value of a variable, but in other applications, the rotation
does not represent anything at all. Again, this is a simple matter to capture on
the representational account.

More generally, the representational account classifies types of computation
according to types of representation. Digital computers are digital because they
use digital representations; analog because they use analog; and perhaps other
types of computers are something else entirely because they use entirely differ-
ent types of representation.

Now, one might worry, as articulated in Piccinini (2004: 377), that accounts
of computation that rely on representations must have a non-representational
way of individuating computational states. The concern is that without such a
non-representational individuation procedure, there is a circularity: the contents
of mental representations are explained by computational relations among those
representations, but computational relations are individuated by the contents of
computational states.24 However, Shagrir (2022: 197) notes that this circularity
is only a problem if the contents of computational states are individuated the
same across all computational systems, and one need not be committed to that
view. Shagrir and I agree on the general point that we should be pluralists about
semantic content or representation: neuroscientists may have one view of what
counts as a representation and what gives them their content, computer scien-
tists another, psychologists another, and so on. Even researchers within those
fields may have differing standards, depending on their interests.

Although the MAC does not work as an account of physical computation, it
succeeds insofar as it points out the necessity of functional mechanisms for such
an account. What unifies computation in natural and artificial systems, and in
digital and analog systems, is the presence of mechanisms. However, without
appealing to the manipulation of representations, the MAC counts as compu-
tational very many things that it should not. The way to fix the account may be
to marry the MAC with some kind of semantic account of computation, along
the lines of that developed by Shagrir (2022). Developing this representational
account of computation, only briefly sketched here, is a task for future work.

5. Conclusion

The mechanistic account of computation fails as a unified philosophical account
of computation because of a dilemma having to do with medium-independence
at the heart of the account. Either too many things (by the MAC’s own lights) are

24. Thanks to Gualtiero Piccinini for raising this concern.

806 • Corey J. Maley

Ergo • vol. 10, no. 28 • 2023

characterized as computational, or it cannot count natural systems as computa-
tional without some separate, independent attribution of (and justification for)
medium-independence already in place. Nevertheless, the mechanistic account
of computation makes significant progress toward articulating an important and
necessary feature of physical computational systems; namely, the presence of
the right kind of mechanism. By coupling this part of the mechanistic account
with a version of a semantic account, we can develop a new account of physical
computation that prioritizes physical representations. But that story is a longer
one to tell, and must wait for another day.

Acknowledgements

Thanks are due to Zoe Drayson, Gualtiero Piccinini, Sarah Robins, and Danielle
Williams for comments and conversation, and for being lovely people all around.

References

Aizawa, Kenneth (2009). Neuroscience and Multiple Realization: A Reply to Bechtel and
Mundale. Synthese, 167(3), 493–510. https://doi.org/10.1007/s11229-008-9388-5

Bechtel, William and Adele Abrahamsen (2005). Explanation: A Mechanist Alternative.
Studies in History and Philosophy of Biological and Biomedical Sciences, 36(2), 421–41.

Church, Alonzo (1936). An Unsolvable Problem of Elementary Number Theory. Ameri-
can Journal of Mathematics, 58(2), 345–63. https://doi.org/10.2307/2371045

Cummins, Robert (1975). Functional Analysis. The Journal of Philosophy, 72(20), 741–65.
Dennett, Daniel C. (2008). Fun and Games in Fantasyland. Mind and Language, 23(1),

25–31.
Dewhurst, Joe (2018). Computing Mechanisms Without Proper Functions. Minds and

Machines, 28(3), 569–88. https://doi.org/10.1007/s11023-018-9474-5
Egan, Frances (2010). Computational Models: A Modest Role for Content. Studies In

History and Philosophy of Science Part A, 41(3), 253–59. https://doi.org/10.1016/j.shp-
sa.2010.07.009

Fodor, Jerry A. (1981). The Mind-Body Problem. Scientific American, 244(1), 114–23.
https://doi.org/10.2307/24964264

Fresco, Nir (2014). Physical Computation and Cognitive Science. Springer.
Gillett, Carl (2003). The Metaphysics of Realization, Multiple Realizability, and the Spe-

cial Sciences. The Journal of Philosophy, 100(11), 591–603.
Glennan, Stuart (2002). Rethinking Mechanistic Explanation. Synthese, 69(S3), S342–53.

https://doi.org/10.1086/341857
Hodgkin, A. L. and A. F. Huxley (1952). A Quantitative Description of Membrane Cur-

rent and Its Application to Conduction and Excitation in Nerve. Journal of Physiology,
117(1–2), 500–544.

Koch, Christof (1999). Biophysics of Computation: Information Processing in Single Neurons.
Oxford University Press.

https://doi.org/10.1007/s11229-008-9388-5
https://doi.org/10.2307/2371045
https://doi.org/10.1007/s11023-018-9474-5
https://doi.org/10.1016/j.shpsa.2010.07.009
https://doi.org/10.1016/j.shpsa.2010.07.009
https://doi.org/10.2307/24964264
https://doi.org/10.1086/341857

 Medium Independence and the Failure of the Mechanistic Account of Computation • 807

Ergo • vol. 10, no. 28 • 2023

London, Michael and Michael Häusser (2005). Dendritic Computation. Annual Review of
Neuroscience, 28, 503–32.

Machamer, Peter, Lindley Darden, and Carl F. Craver (2000). Thinking about Mecha-
nisms. Synthese, 67(1), 1–25.

Maley, Corey J. (2011). Analog and Digital, Continuous and Discrete. Philosophical Stud-
ies, 155(1), 117–31. https://doi.org/10.1007/s11098-010-9562-8

Maley, Corey J. (2021). The Physicality of Representation. Synthese, 199, 14725–50. https://
doi.org/10.1007/s11229-021-03441-9

Maley, Corey J. (2023). Analogue Computation and Representation. The British Journal for
the Philosophy of Science, 74(3), 739–769. https://doi.org/10.1086/715031

Miłkowski, Marcin (2018). From Computer Metaphor to Computational Modeling:
The Evolution of Computationalism. Minds & Machines, 28(3), 515–41. https://doi.
org/10.1007/s11023-018-9468-3

Piccinini, Gualtiero (2004). Functionalism, Computationalism, and Mental Contents. Ca-
nadian Journal of Philosophy, 34(3), 375–410.

Piccinini, Gualtiero (2007). Computational Modelling vs. Computational Explanation: Is
Everything a Turing Machine, and Does It Matter to the Philosophy of Mind? Aus-
tralasian Journal of Philosophy, 85(1), 93–115.

Piccinini, Gualtiero (2008). Computation Without Representation. Philosophical Studies,
137(2), 205–41.

Piccinini, Gualtiero (2015). Physical Computation: A Mechanistic Account. Oxford Univer-
sity Press.

Piccinini, Gualtiero (2020). Neurocognitive Mechanisms: Explaining Biological Cognition.
Oxford University Press.

Piccinini, Gualtiero and Sonya Bahar (2013). Neural Computation and the Computa-
tional Theory of Cognition. Cognitive Science, 37(3), 453–88. https://doi.org/10.1111/
cogs.12012

Polger, Thomas W. (2008). Evaluating the Evidence for Multiple Realization. Synthese,
167(3), 457–72. https://doi.org/10.1007/s11229-008-9386-7

Polger, Thomas W. and Lawrence A. Shapiro (2016). The Multiple Realization Book. Oxford
University Press.

Post, Emil L. (1936). Finite Combinatory Processes—Formulation 1. The Journal of Sym-
bolic Logic, 1(3), 103–5. https://doi.org/10.2307/2269031

Putnam, Hilary (1988). Representation and Reality. MIT Press.
Shagrir, Oron (2001). Content, Computation and Externalism. Mind, 110(438), 369–400.
Shagrir, Oron (2022). The Nature of Physical Computation. Oxford University Press.
Shapiro, Lawrence A. (2000). Multiple Realizations. The Journal of Philosophy, 97(12),

635–54.
Sprevak, Mark (2010). Computation and Cognitive Science. Studies in History and Philoso-

phy of Science, 41(3), 223–26. https://doi.org/10.1016/j.shpsa.2010.07.011
van Gelder, Tim (1995). What Might Cognition Be, If Not Computation? The Journal of

Philosophy, 92(7), 345–81.
Von Eckardt, Barbara (1993). What Is Cognitive Science? MIT Press.

https://doi.org/10.1007/s11098-010-9562-8
https://doi.org/10.1007/s11229-021-03441-9
https://doi.org/10.1007/s11229-021-03441-9
https://doi.org/10.1086/715031
https://doi.org/10.1007/s11023-018-9468-3
https://doi.org/10.1007/s11023-018-9468-3
https://doi.org/10.1111/cogs.12012
https://doi.org/10.1111/cogs.12012
https://doi.org/10.1007/s11229-008-9386-7
https://doi.org/10.2307/2269031
https://doi.org/10.1016/j.shpsa.2010.07.011

