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According to one of the better known constraints on epistemic utility func-
tions, each probabilistically coherent function should be immodest in a 

particular sense: for any probabilistically coherent credence function P and any 
alternative Q ≠ P to P, the expected epistemic utility of P relative to P should be 
greater than that of Q relative to P. This constraint, often known as Strict Pro-
priety, is usually motivated by appealing to a combination of two independent 
claims. The first is a certain kind of admissibility principle: that any probabilis-
tically coherent function can sometimes be epistemically rational.1 The second 
is an abstract principle linking epistemic utility and rationality: that an epis-
temically rational credence function should always expect itself to be epistemi-
cally better than any of its alternatives.2 If we assume, as most typically do, that 
the alternatives to any probabilistically coherent function are all and only those 
credence functions with the same domain, these two principles arguably entail 
Strict Propriety.

What happens if we enlarge the class of alternatives to include a wider range 
of probability functions, including some with a different domain? This would 
strengthen the principle linking epistemic utility and rationality: it would no 
longer suffice, for a credence function to be deemed epistemically rational, that 
it expects itself to be doing better, epistemically, than credence functions with 
the same domain. And this stronger principle would arguably give us a more 
plausible theory of epistemic rationality, at least on some ways of widening the 
range of alternatives. Suppose an agent with a credence function defined over a 

1. Cf. Joyce (2009: 279) on ‘Minimal Coherence’.
2. Cf. the principle ‘Immodest Dominance’ in Pettigrew (2016: 24). See also Joyce (2009: 280) 

on what he calls ‘Coherent Admissibility’.
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collection of propositions takes herself to be doing better, epistemically, than she 
would be by having another credence function defined over the same collection 
of propositions. But suppose she thinks she would be doing better, epistemically, 
having a credence function defined over a smaller collection of propositions—
perhaps she thinks she would be doing better, epistemically, not having certain 
defective concepts and thus that she would be doing better, epistemically, sim-
ply not having propositions with those concepts as constituents in the domain 
of her credence function. Such an agent would seem to be irrational in much the 
same way as an agent who thinks she would be doing better, epistemically, by 
assigning different credences to the propositions she assigns credence to.3

Now, my interest here is not with the question what is the right principle 
linking epistemic utility and rationality. Rather, I am interested in understand-
ing how strong a principle we can consistently endorse: I am interested in the 
kinds of constraints on epistemic utility functions that come from different views 
on how epistemic utility and epistemic rationality are related to one another. So 
I start by considering the strongest version of a principle linking epistemic util-
ity and rationality, one that says that an epistemically rational credence function 
should take itself to be doing better than any other credence function, regard-
less of its domain. As we will see, the resulting immodesty constraint is far too 
strong, in that, perhaps surprisingly, it cannot be satisfied by any reasonable 
epistemic utility function—that this is so is a consequence of the main results in 
this paper (Subsection 3.1–Subsection 3.2).4

I then consider different possible ways of weakening this principle, study the 
resulting constraints on epistemic utility functions and their relationship to one 
another, and establish a few characterization results for the class of epistemic 
utility functions satisfying these constraints (Subsection 3.3). Before concluding, 
I discuss (Section 4) how my results relate to recent work on the question whether 
epistemic utility theory is incompatible with imprecise, or ‘mushy’, credences.

1. Introduction

Fix a collection W of possible worlds and a finite partition π of W—a collection of 
pairwise disjoint, jointly exhaustive subsets of W, which we call cells.

3. Cf. Pérez Carballo (2023: esp. §3.2).
4. Previous work on related issues include Carr (2015), Pettigrew (2018), Talbot (2019). Unlike 

those authors, I make very minimal assumptions about the nature of epistemic utility—I do not 
assume, for example, that epistemic utility functions are simply measures of accuracy (my results 
are thus independent of whether we endorse the program of ‘accuracy first’ epistemology), nor 
that the epistemic utility of a credence function at a world is determined by the epistemic utility 
of individual credence assignments to propositions (my results do not rely an ‘atomistic’ concep-
tion—in the sense of Joyce 2009: § 5—of epistemic utility).
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I will say that a real-valued function P defined over π is coherent iff for each 
s ∈ π, P(s) ∈ [0, 1], and ( ) 1s P så ∈ =π . A coherent function over π uniquely deter-
mines a probability function over the Boolean closure of π. Accordingly, and 
slightly abusing notation, I will refer to coherent functions over π as probability 
functions over π.5

Let π  denote the collection of probability functions over π. An epistemic util-
ity function (for π) is a function : : { , }W´ È -¥ ¥® R Ru =π  such that for each 

, ( , · ) :P P W ® Ru∈ π  is π-measurable—where  :  f W ® R is π-measurable iff 
for each ( ) }, { :r w f w rR∈ =  is in the Boolean closure of π.6

Throughout, I assume that epistemic utility functions are bounded above (for 
each u there exists a finite M such that u < M) and truth-directed in the following 
sense: for all w ∈ W, if (i) for any proposition s in π, P(s) is at least as close as P′(s) 
is to the truth-value of s in w,7 and (ii) for some proposition s in π, P(s) is strictly 
closer than P′(s) is to s’s truth-value in w, then ( , ) ( , )P w P w¢u u> .8

By definition, for fixed u and , ( , )Q Q × u∈ π  is a discrete random variable. 
Accordingly, for P ∈ π  I will let ~( :[ )] [ ( , ) ]P X PQ Q XE Eu u=  denote the expectation 
of u(Q) relative to P, so that

[ ( )] ( ) ( , ),P S
s

Q P s Q wåE u u
∈

=
π

where s ⟼ ws is a choice function, in that for each w and s, ws ∈ s. The 
π-measurability of u(Q, · ) ensures that our definition does not depend on our 
choice function. Indeed, I will simply write u(Q, s) to denote u(Q, ws), so that 

[ )] ( ) ,( ( )sP sQ P s QE u u∈= å π .
I will say that an epistemic utility function u for π is proper iff for each ,P Q ∈ π,

[ )] [ )].( (P PP Qu u≥ EE

I will say that u is strictly proper iff for each P Q ≠ ∈ π , the above inequality is 
always strict. (When u is proper but not strictly proper I will sometimes say that 
u is weakly proper.) A variety of characterization results can be found in the lit-
erature—see especially Gneiting and Raftery (2007).

Strictly proper epistemic utility functions have been the subject of consider-
able interest. In discussions of how to reward a forecaster’s predictions, strictly 

5. Since I will be taking Probabilism for granted, we can work with these simplified defini-
tions without loss of generality.

6. The standard definition of π-measurability of course requires that the preimage of any 
open set in R be in the Boolean closure of π. But since π is finite, this simpler definition is equiva-
lent to the standard one.

7. I identify the truth-value of s in w with 1 if s is true in w (w ∈ s) and 0 otherwise.
8. Arguably, epistemic utility functions would need to satisfy additional constraints to count 

as genuinely epistemic ways of comparing probability functions relative to a given state of the 
world. For a sense of the wide range of possible constraints, see Joyce (2009).



 Generalized Immodesty Principles in Epistemic Utility Theory • 877

Ergo • vol. 10, no. 31 • 2023

proper functions are of interest because they reward honesty—someone whose 
forecasts will be rewarded using a strictly proper epistemic utility function can-
not expect to do better than by reporting her true credences (Brier 1950; Savage 
1971). In general discussions of epistemic value, strictly proper functions are of 
interest because they incorporate a certain kind of immodesty—if your epistemic 
values are represented by a strictly proper epistemic utility function and you are 
rational, you will never expect any other credence function to be doing better, 
epistemically, than your own (Joyce 2009; Gibbard 2008; Horowitz 2014; Greaves 
& Wallace 2006; inter alia).9

And in discussions of justifications of Probabilism—the requirement on 
degrees of belief functions that they satisfy the axioms of the probability cal-
culus—strictly proper utility functions have played a starring role in a range 
of dominance results to the effect that probabilistic credences strictly dominate 
non-probabilistic credences and are never dominated by any other credence 
function (Joyce 1998; 2009; Leitgeb & Pettigrew 2010; Pettigrew 2016; Predd, 
 Seiringer, Lieb, Osherson, Poor, & Kulkarni 2009).10

One natural question to ask is how to generalize the framework of epistemic 
utility theory to allow for comparisons of probability functions defined over 
 distinct algebras of propositions. And given such a generalization, an equally 
natural question is how to generalize the notion of (strict) propriety. Let me take 
each of these questions in turn.

2. Generalizing the Framework

Let Π denote the collection of finite partitions of W. For π, π′ ∈ Π, say that π is 
a refinement of π′ iff for each s ∈ π there is s′ ∈ π′ such that s ⊆ s′. If π is a refine-
ment of π′, I will say that π′ is a coarsening of π. Of course, the refinement rela-
tion induces a partial ordering over Π, which I will denote by , where π′  π 
iff π′ is a refinement of π. In fact, the resulting partially ordered set constitutes 

9. Strictly speaking, immodesty alone is not enough to motivate something as strong as 
Strict Propriety. The assumption that epistemic rationality is immodest ensures at best that at 
any one time, an agent’s epistemic values at that time must be such as to render her current cre-
dence function immodest: it must judge that it is doing better, by the light of the agent’s current 
values, than any alternative credence function. In order to motivate Strict Propriety, we would 
need additional assumptions, e.g., that an agent’s epistemic values at a time should never by 
themselves rule out as irrational any coherent credal state, or that there is a single admissible 
epistemic utility function.

10. See, however, Campbell-Moore and Levinstein (2021) for arguments that in the context 
of additive and truth-directed epistemic utility functions, weak propriety suffices; relatedly, see 
Nielsen (2022) for generalizations of the results of Predd et al. (2009) using a condition weaker than 
strict propriety.
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a lattice, in that any subset   of Π admits of an infimum (a coarsest partition 
that is a refinement of all elements of ) and a supremum (a coarsening of each 
element of  that refines any other partition that coarsens each element of ).

Define now  Π=: π , and, for a given P ∈ , let πP denote the domain of P. 
If , P¢ ∈ ππ π , and Q ¢∈ π , I will say that Q is an extension of P to π’ (and P is a 
restriction of Q to π) iff for each s ∈ π,

( ) ( ),
s s

Q s P s
¢

¢å
⊆

=

where s′ ranges over elements of π′. I will say that P is a restriction of Q (and Q an 
extension of P) iff πP  πQ and P is a restriction of Q to πP.

A generalized epistemic utility function is a real-valued function u defined over 
W´  such that for each π ∈ Π, the restriction11 of u to W´π  is a truth-directed, 

epistemic utility function for π. I will say that a generalized epistemic utility 
function u is partition-wise proper iff for each π ∈ Π, the restriction uπ of u to W´π  
is proper. I will say that u is (partition-wise) strictly proper iff uπ is strictly proper 
for all π ∈ Π.

It is straightforward to define generalized epistemic utility functions that 
are partition-wise proper. For example, take the generalized version of the Brier 
score, defined by 

2( , ) ( ( ) { }) ,
Ps

P w P s w såb 1
∈

= − − ∈
π

where 𝟙{w ∈ s} equals 1 if w ∈ s and 0 otherwise. It is easy to check that b is a gen-
eralized epistemic utility function that is partition-wise strictly proper. Indeed, 
for any family {uπ : π ∈ Π} of functions such that uπ is a partition-wise strictly 
proper utility function for each π, the function ( , ) ( , )

P
P w P wu u= π  is a generalized 

epistemic utility function that is partition-wise strictly proper.
If we are working with a fixed partition and only considering probability 

functions defined over that partition, a strictly proper epistemic utility func-
tion for that partition ensures the kind of immodesty that is allegedly a feature 
of epistemic rationality (Lewis 1971). And in the context of elicitation, strictly 
proper epistemic utility functions for a given partition can be used to devise sys-
tems of penalties and rewards that ensure the kind of honest reporting of fore-

11. I’m using ‘restriction’ here in the standard way, where the restriction of a function f 
defined over X to some Y ⊆ X just is a function Yf   whose domain is Y and is such that for all 

, ( ) ( )Yy Y f y f x∈ = . The terminological ambiguity here is merely apparent: if P is a credence func-
tion over π, π’  π, and Q the restriction of P to π’, we can identify P with a unique probability 
function defined over the smallest algebra Aπ  containing π and Q with the restriction of that prob-
ability function to the smallest algebra containing π’, which of course is a subset of Aπ .
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casts over that partition that made epistemic utility functions, or scoring rules, 
play the starring role in a wide body of literature.12

Once we relax the assumption that we are working with a fixed partition, 
however, partition-wise strict propriety does not suffice to ensure immodesty, 
nor to encourage honest reporting. To see why, first note that for any Q, our 
assumptions so far allow us to define the expectation of u(Q) relative to any P 
defined over a refinement of πQ,13 and in fact, where PQ is the restriction of P to 
the domain of Q, we have:

[ )] )]( [ ( .P PQ
Q Qu u=E E (1)

We can now see, using the Brier score as our epistemic utility function, that any
probability function that is not maximally opinionated—any probability function that
assigns values other than 0 or 1 to some propositions—will assign a greater expected
epistemic utility to a probability function other than itself.14 (Consequently, if we do
not fix a partition but allow a forecaster to choose which partition to report her fore-
casts on, she will expect to do better by reporting a strict restriction of her credence
function as long as her credence function is not maximally opinionated.15)

Example 1. Suppose P is not maximally opinionated. Let π* be a coarsening of 
πP such that the restriction P* of P is maximally opinionated. Note now that for 
s ∈ π* with P*(s) ≠ 0, b(P*, s) = 0, and hence that 

[ [ 0.)] )]P PP P*
* *b( b(= =E E

Now let s0 ∈ πP be such that P(s0) ∈ (0, 1), and let 0{ }P P s- =π π . By definition,
2 2 2

0 0( , ) ( ( ) 1) ( ) ( ) 0,
P Ps s

P s P s P s P så åb
− −∈ ∈

= − − − < − ≤
π π

and thus
[ )] 0 )].P PP P*[b( b(< = EE

□
An interesting question, then, is whether there are epistemic utility functions 

that capture the relevant kind of immodesty once we consider probability func-

12. Again, see Gneiting and Raftery (2007) and references therein.
13. This is because our assumptions ensure that u(Q, · ) is measurable with respect to P, and

thus that the expectation is well-defined.
14. Cf. Carr (2015), Pettigrew (2018), and Pérez Carballo (2023).
15. Note that the example below suffices to show that the normalized version of the Brier

score, defined by 
21( , ) ( ( ) { }) ,

| |
PP s

P w P s w såb 1∗

∈

= − − ∈
π

π

is also not downwards proper.
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tions defined over any partition. In other words, the question is whether there are 
epistemic utility functions such that, for any probability function P, P ‘takes itself’ 
to be doing better than any other Q ≠ P in terms of epistemic utility. But in order 
to answer this question, of course, we need to make clear what it is for some prob-
ability function to ‘take itself’ to be doing better than another in terms of epistemic 
utility. After all, we cannot just use the familiar notion of expectation here since, in 
general, for given ,P Q ∈ , the expectation of u(Q) relative to P is not well-defined.

Before turning to this question, let me introduce a few more pieces of termi-
nology. Fix P and let π be some partition of W. I will denote by [P]π the collection 
of all extensions of P to the coarsest common refinement of πP and π—thus, each 
P+ in [P]π will be an extension of P whose domain refines both πP and π.16 Slightly 
abusing notation, for a given Q and P, I will use [P]Q as shorthand for [ ]

Q
P π . (Note 

that if π is a refinement of πP, [P]π is just the set of extensions of P to π, and that  
if π is a coarsening of πP, [P]π is just the singleton set of the restriction of P to π.)

It will be convenient to also have at our disposal three different quantities 
which (albeit imperfectly) summarize some of the information about how u(P) 
and u(Q) compare relative to members of [P]Q. First, define the lower expectation17 
of u(Q) relative to P, which I denote by )([ ]P QE u , by 

[ ]
[ )] : in( (f [ )].

Q
P PP P

Q Q¢¢
E u u

∈
= E

Similarly, define the upper expectation of u(Q) relative to P, which I denote by 
)[ ( ]P QE u , by 

[ ]
)] : su[ ( (p [ )].

Q

PP
P P

Q Q¢
¢

E u u
∈

= E

Finally, for α ∈ [0, 1], we can define the α-expectation of u(Q) relative to P, which 
I denote by )( ][P QE uα , by 

[ ( ()] : [ ( )] (1 ) [ )] .P PP Q Q Q× E Eu uu= + − ⋅Eα α α

Intuitively, the lower expectation of u(Q) relative to P can be thought of as 
P’s worst-case estimate for the value of u(Q); similarly, the upper expectation of 

16. Note that [P]π is always non-empty, since whenever A and ¢A  are finite Boolean algebras, 
and ¢A A⊆ , any probability function over A can be extended to ¢A .

17. Note that we can think of [P]π as an imprecise probability function, most naturally identi-
fied with a representor in the sense of van Fraassen (1990), viz. a set of probability functions. In this 
case, we can think of [P]π as an imprecise probability function that assigns precise values to each 
member of πP and imprecise values to any other member of π. The definitions to follow can thus be 
seen as variants of the familiar definition of upper and lower expectation for imprecise probabili-
ties (Gilboa 1987; Satia & Lave 1973), at least assuming that all representors are convex, in the sense 
that representors are closed under convex combinations (linear combinations with non-negative 
weights adding up to one). 
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u(Q) relative to P can be thought of as P’s best-case estimate for the value of u(Q). 
(For a given α, the α-expectation of u (Q) relative to P is a weighted average of 
the two estimates.)

Clearly,
[ ( )] [ )],(PP Q QE E uu ≤

with equality if πP  πQ, in which case

( ([ )] [ )] [ )].(PP PQ Q Q= =E E Eu u u

Also note that for any α ∈ [0, 1],

 
If , then [ )] [( [ ( (( )] )] [ Q)].P P P PP Q Q Q Q E E E Eu u uu= = =απ π  (2)

so that for any α ∈ [0, 1], we have:

 
0 1( ( [ ([ )] [ )] )] )] [ ( )[ ( ],PP P PP Q Q Q Q QE Eu u u uu= ≤ ≤ =E E Eα  (3)

Given all of these resources, we have two ways of formulating a general-
ized immodesty principle.18 Say that an epistemic utility function u is universally 
u-proper iff for each P ≠ Q,

[ )] [ )]( ( ,PP P QEu u≥E

and strictly universally u-proper iff the above inequality is always strict. Say that 
it is universally l-proper iff for each P ≠ Q,

[ )] [ )]( ( ,P PP QEu u≥E

and strictly universally l-proper iff the above inequality is always strict. The two 
generalized immodesty principles I will consider are (strict) universal u-propri-
ety—the claim that all epistemic utility functions must be (strictly) universally 
u-proper—and (strict) universal l-propriety—the claim that all epistemic utility 
functions must be (strictly) universally l-proper. My question will be whether 
there are any epistemic utility functions that satisfy any of these principles.

Before turning to this question, I want to spend some time explaining why 
these two principles stand out among other plausible generalizations as wor-
thy of our attention. (Those who find u-propriety and l-propriety independently 
interesting are welcome to skip to the next section.)

18. To anticipate, while I will focus on these two formulations, the reason is not that I think 
either one of them is the best way to generalize immodesty to allow for alternatives to a credence 
function with different domains. Rather, it is because these two principles stand at the extreme 
ends of a much larger family of plausible generalizations: one is stronger and the other is weaker 
than any other generalization.
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One way to think about immodesty is as the claim that epistemic utility func-
tions should make all coherent credence functions immodest in the following 
sense: an agent with that credence function will think her own credence function 
is choice-worthy—and perhaps uniquely so—among alternative credence func-
tions she could have and relative to that epistemic utility function. When the 
alternatives all have a well-defined expectation, and on the assumption that an 
option is choice-worthy if it maximizes expected utility, immodesty thus under-
stood amounts to the claim that any epistemic utility function should be proper 
or strictly proper. So in order to formulate generalizations of immodesty to the 
case where alternative credence functions lack a well-defined expectation, we 
need to consider alternative ways of identifying when a credence function is 
choice-worthy among a given set of alternatives.

The literature on decision-making with imprecise probabilities contains 
a number of options we can make use of: rules for deciding between options 
whose outcomes depend on the state of the world when we do not have well-
defined credences for each of the relevant states of the world.19 Each of them 
can be used to formulate a way to understand what it is for a credence func-
tion to take itself to be choice-worthy when the alternatives include all credence 
functions regardless of their domain, and accordingly to formulate a generalized 
immodesty principle.20

First, we could say that P takes itself to be choice-worthy iff it has greater 
expectation relative to all members of [P]Q:

 
For each and each [ ] , )] [[ )( ( ]Q P PQ P P P P QE Eu u+ +

+≠ ∈ ≥  (4)

Alternatively, we could say that P takes itself to be choice-worthy iff there is no 
other option that gets greater expectation relative to all members of [P]Q:

  For each , there is [ ] such that [ )] [ )]( ( P PQQ P P P P QE Eu u+ +
+≠ ∈ ≥  (5)

19. See, e.g., Troffaes (2007) for a recent overview of the relevant literature. For reasons that 
will emerge in Section 4, however, my concerns are somewhat orthogonal to questions animating 
the debate over the rationality of imprecise probability functions, so we do not want to take the 
analogies here too seriously.

20. Specifically, (4), below, corresponds to the fourth preference ranking listed in §5.4.3 of 
Halpern (2003); (5) corresponds to using what is sometimes called the Maximality rule (e.g., Wal-
ley 1991); (6) to using the Γ-Maximax rule (e.g., Satia & Lave 1973); (7) to using the Γ-Maximin rule 
(e.g., Gilboa & Schmeidler 1989); (8) to using Interval Dominance (e.g., Ramoni & Sebastiani 2001); 
and (9) corresponds to using the so-called Hurwicz Criterion (Hurwicz 1951). I should note that the 
list above is incomplete. Some of the rules that have been discussed in the literature—for example, 
the so-called ‘Ellsberg’s rule’ (Ellsberg 1961) and Minimax regret (Savage 1951)—do not correspond 
to any of the principles above. As far as I can tell, whether an immodesty principle could be for-
mulated using one of these other decision rules is an interesting question left open by anything I 
have to say.
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We could instead say that P takes itself to be choice-worthy iff

 
For each , [ )] [ Q)]( ( ,P PQ P PE Eu u≠ ≥  (6)

Or that P takes itself to be choice-worthy iff

 For each , [ ( ()] [ Q)].P PQ P P≠ ≥E Eu u  (7)

We could also say that P takes itself to be choice-worthy iff

 For each , [ )] [( Q)( ].(PPQ P PE Eu u≠ ≥  (8)

Finally, we could say that P takes itself to be choice-worthy iff for a given α ∈ 
(0, 1),

 
For each , [ )] [ )]( .(P PQ P P Qu u≠ ≥E Eα α  (9)

For each of these ways of understanding what it is for P to take itself to be 
choice-worthy, we could have a generalized version of weak propriety. Now, 
any objection to using one of the above principles—the detailed formulation of 
the principles to the more general decision-theoretic setting need not concern us 
here—can arguably be used to object to a particular way of making precise the 
fully general version of immodesty.21 But since it remains largely an open ques-
tion whether any of the objections to the above principles are decisive, I want 
to remain neutral as to which is the best way of characterizing a fully general 
immodesty principle.

Fortunately, these generalizations are not logically independent of one 
another. To see that, start by fixing u and noting that the supremum and infimum 
in the definitions of upper and lower expectations can be replaced with a maxi-
mum and a minimum. (This follows from the fact that { [ )] [ }( : ]P QQ P P+

+E u ∈  is 
compact in R.22) It follows from this and the observation in (3) that (5) and (7) 
are equivalent to each other; that (4), (6), and (8) are equivalent to each other; and 
that (6) entails (7). As a result, (7) is weaker than all of (4), (5), (6), and (8). Further, 
since for a fixed P, any counterexample to (7) is itself a counterexample to (6), 
we have that the weakest form of immodesty we could hope for is given by (7): 
if u does not satisfy (7) for all P, it cannot satisfy any of the other generalizations.

21. As an anonymous referee rightly points out, all of these principles violate the arguably 
unobjectionable principle of weak dominance—that any rational agent should prefer A to B if A is 
never worse and sometimes strictly better than B. We can avoid these concerns by reformulat-
ing our principles as principles of choice from among non-weakly-dominated options (as in, e.g., 
 Troffaes 2007). Even then, objections to each of the rules considered above remain, especially when 
dealing with sequential choice problems. For discussion, see, for example, Seidenfeld (1988) and 
Bradley (2018).

22. It can also be seen as a direct consequence of Fact 3.2, below.
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Similarly, it follows from these observations that (6) is the strongest gen-
eralization of immodesty from among those we have considered. In short, the 
most we can hope for when formulating a generalized immodesty principle is 
essentially the requirement that all epistemic utility functions satisfy (6)—that 
is, universal u-propriety; but at the very least, we want a generalized immodesty 
principle equivalent to the claim that all epistemic utility functions satisfy (7)—
that is, universal l-propriety. The question now is whether there are epistemic 
utility functions satisfying either of these generalizations.

3. On Some Generalized Immodesty Principles

I begin by asking whether there are any universally u-proper epistemic utility 
functions. The answer, perhaps unsurprisingly, is no, at least if we restrict our 
attention to strictly partition-wise proper epistemic utility functions.

3.1. There Are No (Strictly) Universally U-Proper Epistemic 
Utility Functions

Say that an epistemic utility function u is downwards proper iff for each P and each 
Q defined over a coarsening of πP,

[ )] [ )]( ( ,P PP QEE u u≥

and strictly downwards proper iff the above inequality is always strict. Say that u is 
upwards u-proper iff for each P and each Q defined over a refinement of πP,

[ )] ]( [ ( )PP P QE u uE≥

and strictly upwards u-proper iff the above inequality is always strict.23

Using these definitions we can make a few simple observations. First, and 
most clearly, (strict) downwards propriety and (strict) upwards u-propriety 
individually suffice for (strict) partition-wise propriety. Second, for partition-
wise proper epistemic utility functions, (strict) downwards propriety (resp. 
(strict) upwards u-propriety) can be established by looking only at comparisons 
between credence functions and their restrictions (resp. extensions).

23. A helpful mnemonic: for downwards propriety you compare by going down in size: you 
compare a credence function only with those defined over a smaller domain; for upwards propri-
ety, you go up in size: you check only those with a larger domain.
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Fact 3.1. Suppose u is partition-wise proper. Then:

(i) u is downwards proper iff for each P and each restriction Q of P, [ )] [ )]( (P PP Qu uE E≥ ; 
u is strictly downwards proper iff [ )] [ )]( (P PP Qu uE E>  whenever Q is a restric-
tion of P.

(ii) u is upwards u-proper iff for each P and each extension Q of P, [ )] [ )]( (PP P Qu uE E≥ ; 
u is strictly upwards u-proper iff [ )] [ )]( (PP P Qu uE E>  whenever Q is an exten-
sion of P and Q ≠ P.

Proof. Only the right-to-left direction of each biconditional is non-trivial, and that 
of (i) follows immediately from (1) and the fact that if Q is defined over a coars-
ening of P and PQ is the restriction of P to πQ, partition-wise propriety ensures 
that [ ( )] )][ (

Q QP Q PP Pu uE E≥ .
For the right-to-left direction of (ii), simply note that for P and Q with πQ  

πP, our assumptions ensure that for each extension P+ of P to πQ,

[ )] [ [ )],( ( )] (P P PP P QE E Eu u u+ +
+≥ ≥

which ensures [ )] [ )]( (PP P Qu uE E≥ .  □
Say that an extension Q of P is opinionated iff for each s ∈ πP there is sQ ∈ πQ 

with sQ ⊆ s and Q(sQ) = P(s)—in other words, an extension is opinionated if for 
each cell of πP, Q assigns all of the probability P assigns to it to a single one of its 
subsets in πQ. In order to determine the value of the upper or lower expectation 
of any extension Q of P, all we need to look at are the opinionated extensions of 
P defined over πQ.

Fact 3.2. Fix an epistemic utility function u, a probability function P and any Q defined 
over a refinement of πP. There are opinionated extensions QP+ and QP- of P defined over πQ 
such that 

[ )] [( ( ( [)] [ ] () )].
Q QPP PPQ Q and Q QE Eu u u uE E+ −= =

Proof. For each s ∈ πP, pick ,Q Q Qs s+ - ∈π , with Qs s+ ⊆  and Qs s- ⊆ , such that for all Qt ∈π  
with t s⊆

( , ) ( , ) and ( , ) ( , ),QQQ s Q t Q s Q t-u u u u+ ≥ ≤

and let QP+ and QP- be the unique opinionated extensions of P such that for all s, 
( ) ( )Q QP s P s+ + =  and ( ) ( )Q QP s P s- - = .  □
A consequence of the last two results is that for determining whether u is 

upwards u-proper, we don’t really need to compute upper-expectations.
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Corollary 3.3. A partition-wise proper epistemic utility function u is upwards u-proper 
(resp. strictly upwards u-proper) iff for each P and each opinionated extension Q of P, 

[ )] [ )]( (P QP Qu uE E≥  (resp. [ )] [ )]( (QP P Qu uE E>  when Q ≠ P.)

Proof. The left-to-right direction follows immediately from (1) and the definition 
of upper expectation. For the right-to-left direction, take P and fix Q defined over 
a refinement of πP. From Fact 3.2, we know that there is an opinionated extension 

QP+ of P to πQ such that [ )] [ )]( (
QP PQ Qu uE E += .

But by assumption,

[ )] [ )( ( )] ([ ]
QP QPPP P Pu u uE E E +

+= ≥

(resp. the above inequality is strict when Q ≠ P), and from partition-wise propri-
ety we know that

( )] [ ([ )].
Q QQP PP QE Eu u+ +

+ ≥

We can thus conclude that [ )] [ )]( (P PP Qu uE E≥  (resp. [ )] [ )]( (PP P Qu uE E>  when 
Q ≠ P). From Fact 3.1, we conclude that u is upwards u-proper (resp. strictly 
upwards u-proper).  □

Corollary 3.4. A partition-wise proper epistemic utility function u is upwards 
u-proper (resp. strictly upwards u-proper) iff for each P and each extension Q of P, 

[ )] [ )]( (P QP Qu uE E≥  (resp. [ )] [ )]( (QP P Qu uE E>  when Q ≠ P.)

Proof. The right-to-left direction is an immediate consequence of Corollary 3.3. For 
the converse, simply note that if QP+ is an opinionated extension of P such that

[ )] )]( ( ,[
QP PQ QEu uE +=

the definition of upper expectation entails that [ )] )([( ]
QP QQ Qu uE E+ ≥ , so the left-

to-right direction of Corollary 3.3. yields the desired result.  □
Now, a natural question to ask is whether there are epistemic utility func-

tions that are both (strictly) upwards u-proper and (strictly) downwards proper. 
But this just turns out to be the question whether there are universally u-proper 
epistemic utility functions.

Fact 3.5. An epistemic utility function is universally u-proper (resp. strictly universally 
u-proper) iff it is downwards proper (resp. strictly downwards proper) and upwards 
u-proper (resp. strictly upwards u-proper).
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Proof. The left-to-right direction is immediate. For the right-to-left direction, sup-
pose u is downwards proper and upwards u-proper and fix P ≠ Q. Let PQ be an 
arbitrary probability function in [P]Q, so that PQ is an extension of P to the coars-
est partition that refines both πP and πQ. From the fact that u is upwards u-proper, 
together with Corollary 3.4, we know that

( [ ( )][ )] .
QP P QP PE Eu u≥

And since u is downwards proper, we know that

[ )] .( [ ( )]
Q QQP PP QE Eu u≥

We thus have that for any PQ in [P]Q, [ ( )] [ )](
QPP P Qu uE E≥ , which entails 

[ ( )] [ )( ]PP P Qu uE E≥ , as desired. If u is both strictly upwards u-proper and strictly 
downwards proper, then for any P ≠ Q we know that PQ cannot equal both P and 
Q, and thus either we have [ ( )] [ )](PP QP Pu uE E>  or [ ( )] [ )](

Q QQP PP Qu uE E> ; either 
way, we can conclude that [ ( )] [ )](

QP P QPu uE E> , and thus that [ ( )] [ )( ]PP QPu uE E> , 
as desired.  □

And as announced above, there just are no strictly universally u-proper epis-
temic utility functions.

Theorem 3.6. There are no strictly universally u-proper epistemic utility functions.

Proof. Suppose u is strictly downwards proper. Fix P and π*  πP with π* ≠ πP, 
and let P* be some extension of P to π*. Strict downwards propriety entails 

[ ( )] [ )](P PP P* *
*u uE E> . And combined with the definition of upper-expectation 

and (1), this entails

[ ( )] [ )]( [ ( )] [ ( )]P PP PPP P P**
* *E E Euu u uE ≥ > =

which shows that u is not strictly upwards u-proper.  □
Finally, we can strengthen Theorem 3.6 if we restrict ourselves to the class of 

partition-wise strictly proper epistemic utility functions.

Theorem 3.7. There are no universally u-proper epistemic utility functions that are 
strictly partition-wise proper.

Proof. Let u be strictly partition-wise proper, and suppose u is downwards proper. 
Pick P and let π* be a refinement of πP such that such that for all s ∈ πP \ π*, 
P(s) ≠ 0. Let Q be an extension of P to π* that is not opinionated and pick s0 ∈ πP 
and 0s* *∈π  such that 0 0s s* ∈  and 0 0( ) ( )sQ P s* ≠ . From Fact 3.2 and the fact that u is 
downwards proper we know, again using (1) and the definition of upper-expec-
tation, that there is an opinionated extension QP+ of P defined over πQ such that
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( ([ )] [ )] [ )] [ )] [ )].( ( (
Q PP P QQQ Q Q P PE E E Eu u u u uE+ = ≥ ≥ =

Since by construction QP Q+ ≠ , strict partition-wise propriety ensures that

( )][ [ )].(
Q QP PQP QEE u u+ +

+ >

Putting all of this together and using the definition of upper-expectation, we 
have that there is an extension QP+ of P such that

( )] ( )][ [ [ )] [ )],( (
Q QP Q Q PP PP P Q PE E Eu u u uE + +

+ +≥ > ≥

which shows that u is not upwards u-proper.  □

3.2. There Are No (Strictly) Universally L-Proper Epistemic 
Utility Functions

The next question to ask is whether there are any universally l-proper epistemic 
utility functions. If we require that epistemic utility functions be continuous,24 
the answer to this question also turns out to be no—again, at least if we restrict 
ourselves to the class of strictly partition-wise proper epistemic utility functions.

Much like in the previous section, I will define an analogue of upwards u-pro-
priety that relies on the lower expectation, rather than on upper expectation, in 
the obvious way: u is upwards l-proper iff for each P and each refinement Q of P, 

[ )] [ )];( (P PP Qu uE E≥

u is strictly upwards l-proper iff the above inequality is always strict.
Before asking whether there are strictly universally l-proper epistemic utility 

functions, we could ask whether there are any epistemic utility functions that 
are both strictly downwards proper and strictly upwards l-proper. If we restrict 
ourselves to the class of continuous epistemic utility functions, we can answer 
this question in the negative.25

24. For a given u and π, we can think of the restriction of u to W ×π  as a function 1: Nf ®u
R−Δπ , 

where N = |π| and for each n, Δn is the standard n-simplex, that is,

1
1 1{ , , : 1, and for all 1, 0}.:n n

n i ix x x i n xá ¼ ñÎ åx R +
+Δ = = ≤ + ≥=

(Simply fix an enumeration of π and identify each P ∈ π  with the vector 1( ), , ( )NP s P sá ¼ ñ.) An epis-
temic utility function u is continuous iff for each π and w, the function ( , )f wx xu

π  is continuous.
25. In fact, something slightly weaker than the full continuity assumption may be all that 

is really needed—see Grünwald and Dawid (2004) for a more general result, especially their 
 Theorem 6.2 together with their Corollary 4.2.
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Theorem 3.8. If u is continuous and strictly downwards-proper, then it is not upwards 
l-proper.

So we can conclude that if u is continuous, it is not strictly universally l-proper.

Corollary 3.9 There are no continuous, strictly universally l-proper epistemic utility 
functions.  □

Proof of Theorem 3.8. This result is a straightforward consequence of the following 
lemma (essentially due to Grünwald & Dawid 2004), a proof of which is in the 
appendix.

Lemma 3.10. Suppose u is continuous and partition-wise proper. For any P ∈  and 
any π  πP, there is some ˆ [ ]P P∈ π  such that, for all Q ∈ π , and all P* ∈ [P]π

ˆ[ )] [ )] [ )] [ˆ ˆ( ( ( ( )].PP P PQ PP P *
*E Eu u u uE E≤ = ≤

Suppose now u is continuous and strictly downwards proper, fix P, and let π 
 πP with π ≠ πP. Lemma 3.10 ensures that there is P̂ with 

ˆ[ )] [ )ˆ .ˆ ]( (P PP PEu uE =

And since u is strictly downwards proper and P is a restriction of P̂, we can con-
clude that

ˆ[ )] [ )] [ˆ( ( ( )],PP PP PPu u uE EE > =

which means u is not upwards l-proper.

  □

Before concluding this subsection, let me note two consequences of Lemma 
3.10, which serve as counterparts to Corollary 3.4 and Fact 3.5.

Fact 3.11. Suppose u is partition-wise proper and continuous. Then u is upwards l-proper 
(resp. strictly upwards l-proper) iff for each P and each π  πP there is P* ∈ [P]π such 
that ( ( )][ )] [PP P P*

*u uE E≥  (resp. ( ( )][ )] [PP P P*
*u uE E>  if π ≠ πP).

Proof. From Lemma 3.10, we know that for each P and each π  πP there is  
P̂ ∈ [P]π such that

ˆ
[ ]

max [ )] [ )] [ )] minˆ ˆ( ( ([ ) .( ]
P

P QP P QQ P
Q P P Q


E Eu u u uE E

∈∈
= = =

π
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The left-to-right direction now follows immediately (simply let P̂ = P*). For the 
right-to-left direction, simply note that for each P and π  πP we have P* ∈ [P]π 
with ( ( )][ )] [PP P P*

*u uE E≥  (resp. ( ( )][ )] [PP P P*
*u uE E> ). But of course,

[ ]
[ min [ )( )] ( (] max [ )],

P
P PQQ QP

P Q Q*
*


E Eu u uE

∈ ∈
≥ =

π

where the last equality follows from Lemma 3.10. We can thus conclude that u is 
upwards l-proper (resp. strictly upwards l-proper). □

Fact 3.12. A continuous epistemic utility function u is (strictly) universally l-proper iff 
it is (strictly) upwards l-proper and (strictly) downwards proper.

Proof. Again, we only need to show the right-to-left direction, so fix P ≠ Q. From 
Fact 3.11 and the fact that u is continuous and upwards l-proper, we know that 
there is P* ∈ [P]Q such that ( ( )][ )] [PP P P*

*u uE E≥ . But the fact that u is downwards 
proper entails that ( )] ( )[ ][P PP Q* *

* uuE E≥ , so that 

( ( )],[ )] [PP P QE u uE≥

as desired. If u is strictly upwards l-proper and strictly downwards proper, then 
repeat the above reasoning after first assuming πQ is neither a refinement nor a 
coarsening of πP, so that P* is either different from P or from Q.  □

3.3. Downwards Propriety and Upwards Propriety

We have seen that there are no strictly universally u-proper or l-proper epistemic 
utility functions. But we can easily find examples of downwards proper and 
upwards u-proper (and hence upwards l-proper) epistemic utility functions.

Say that an epistemic utility function u is an additive accuracy measure26 iff 
there is a function : [0, 1] {0, 1}® R×u  such that

( , ) ( ( ), { }).
Ps

P w P s w såu 1
∈

= ∈
π

u

Say that a function : [0, 1] {0, 1}® R×u  is proper iff for all x ≠ y ∈ [0, 1],

( ) ( ) ( ) ( ) ( ) ( )· , 1 1 · , 0 · , 1 1 · , 0 ,x x x x x y x y+ − ≥ + −u u u u

and say that u is strictly proper iff the above inequality is always strict.

26. I am thus implicitly assuming that accuracy measures satisfy what Joyce (2009: 273) calls 
‘Extensionality’. Nothing hinges on this assumption, of course—you can simply read ‘additive 
accuracy measure’ as shorthand for ‘extensional, additive accuracy measure’.
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If u is an additive accuracy measure, I will call u its local accuracy measure. It 
is easy to see that an additive accuracy measure is partition-wise proper (resp. 
strictly proper) iff its local accuracy measure is proper (resp. strictly proper).

For a given local accuracy measure u I will call : [0, 1]f ® Ru  its self-expecta-
tion function, where

( ) : ( , 1) (1 ) ( , 0).x x x x xf × ×+ −=u u u

The linearity of expectation ensures that if u is an additive accuracy measure 
with local accuracy measure u,

[ )] ( ( )).(
P

P
s

P P sfåE u
∈

=
π

u

From this we can easily derive the following characterization result.27

Theorem 3.13. An additive accuracy measure u with a proper local accuracy measure u 
is downwards proper (resp. strictly downwards proper) iff its self-expectation function 
fu is subadditive, in that for x, y ∈ [0, 1], with x + y ∈ [0, 1]

( ) ( ) ( ),x y x yf f f+ ≤ +u u u

(resp. strictly subadditive, in that the above inequality is always strict). □

Proof. For the left-to-right direction, start by taking a three celled partition π = {s0, 
s1, s2} and let π* = {s0, s*} be a coarsening of π (and hence, s* = s0 ∪ s1). Fix x, y ∈ 
[0, 1] with x + y ∈ [0, 1] and let P be the unique probability function in π assign-
ing x to s1 and y to s2. Let P* be the restriction of P to π* and note that

( ( )) (1 ( )) ( ) ( )
s

[ (P)] P s x y x yf f f få
∈

= = − + + +
π

EP u u u u u

and

[ )] ( ( )) (1 ( ) ( )( )P
s

P P s x y x yf f f*

*

* *åE u
∈

= = − + + +
π

u u u

Since u is downwards proper, we know that ( )] ( )] ([ [ [ )]P PP P P P*
* *E E Eu u u= ≤ , 

and hence that ( ) ( ) ( )x y x yf f f+ ≤ +u u u , as required.
For the converse, fix P and π  πP with |πP| – |π| = 1. In other words, π is a 

coarsening of πP such that there are s0, s1 ∈ πP with s0 ∪ s1 = s* ∈ π such that π = {s*} 
∪ (πP \ {s0,s1}). Let P* be the restriction of P to π, set x0 = P(s0), x1 = P(s1), and note 
that, letting t range over elements of π, 

0 1[ )] ( ( )) (( ) ( ) ( ( ))
P

P
s t s

P P s x x P tf f f f
*

å åE u
∈ ≠

= = + +
π

u u u u

27. See Pérez Carballo (2023: Proposition 2), for a slightly more general result.
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and
0 1

0 1

[ ( ( )) ( ) ( ( ))

( )

( )]

( ( ))

P
s t s

t s

P P s x x P t

x x P t

f f f

f f

*

* *

*

* * *å å
å

E u
∈ ≠

≠

= = + +

= + +
π

u u u

u u

Since fu is subadditive, we conclude that ( )] ( )][ [ )([ ]PPP P P P*
* *E E Eu u u= ≤ . A 

simple inductive argument on the size of |πP| – |πQ| shows that for any P and 
any restriction Q of P, ( )][ [ ]( )P PP QE Eu u≥ , as required.

Parallel reasoning shows that, for proper u, strict subadditivity is equivalent 
to strict downwards propriety.  □

As we saw in Example 1, the (generalized) Brier score is not downwards 
proper, but the (generalized version of the) well-known spherical score (which, like 
the Brier score, is an additive accuracy measure) is strictly downwards proper.

Example 2. Define : [0, 1] {0, 1}® R×s  by

2 2

1 ( )|( , ) :
(1

|
)

i xx i
x x

− +
=

+ −
s

and let
( , ) : ( ( ), { }).

Ps

P w P s w sås 1
∈

∈=
π

s

Clearly, the restriction of s to any partition is just the familiar spherical score, 
which is strictly proper, so that s is strictly partition-wise proper. But s is also 
strictly downwards proper.

To see why, note that for any x ∈ [0, 1],

2 2

2 2 2 2

1( ) (1 ) (1 )
(1 ) (1 )

, (1 ) ,

x xx x x x x
x x x x

x x

f
æ ö æ ö÷ ÷ç ç÷ ÷ç ç× ×÷ ÷ç ç÷ ÷ç ç÷ ÷÷ ÷ç çè

=
ø è ø

á ñ

=
−

= + − + −
+ − + −

−

s

‖ ‖

where ‖·‖ is the Euclidean norm.
Since the Euclidean norm is a norm, it satisfies the triangle inequality, and 

thus for any x,y ∈ [0, 1] with x + y ∈ [0, 1],

( ) ( ) , 1 , 1
, 1 1 ( ) , 1 ( ) ( ),

x y x x y y
x y x y x y x y x y

f f
f

á ñ á ñ
á ñ á ñ

+ − + −
≥ + + − + > + − + = +
=s s

s

‖ ‖ ‖ ‖

‖ ‖ ‖ ‖

which means fs is strictly subadditive and thus that s is strictly downwards 
proper. 
 □

We also need not look far to find an example of an upwards proper additive 
accuracy measure.
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Example 3. Let

( , ) log( ([ ] )),PP w P wl =

where [w]P is the unique s ∈ πP with w ∈ s. As is well known, l is partition-wise 
proper. But it is also upwards u-proper. To see that, first note that for any P, 

[ )] ( ) ( , ) ( ) ( ( )).log
P P

P
s s

P P s P s P s P sl( l
∈ ∈

= ⋅ =∑ ∑
π π

E

Fix now P, let P* be an opinionated extension of P, and for each s ∈ πP let s* 
denote the unique t ∈ πP* with t ⊆ s and P*(t) ≠ 0. Note now that 

[ )] ( ) log( ( )( ) ( ) log( ( )).
P P

P
s s

P P s P s P s P s* * * *å ålE
∈ ∈

= ⋅ = ⋅
π π

And of course,

( ) log( ( )) ( ) ( , ) [ .)]
P P

P
s t

P s P s P t P t P*

*

* * * * * * *× ×å å l l(E
∈ ∈

= =
π π

From Corollary 3.3 we conclude that l is upwards u-proper, and thus upwards 
l-proper.        □

Note that the log score is also an additive accuracy measure with local accu-
racy measure l, where

l( ,x i) = i × log(x).

Note too that l(0, 0) = 0. Interestingly, any additive accuracy measure u whose
local accuracy measure u satisfies u(0, 0) = 0 will be upwards u-proper, as the 
following makes clear.

Theorem 3.14. An additive accuracy measure u is upwards u-proper (resp. strictly 
upwards proper) iff u(0, 0) ≤ 0 (resp. u(0, 0) < 0), where u is u’s local accuracy measure.

Proof. Suppose u is an upwards u-proper additive accuracy measure with local 
accuracy measure u. Take a two cell partition π = {s0, s1} of W. Let P0 be the unique
probability function in π that assigns probability 1 to s0 and let P be the unique
probability function defined over the trivial partition {W}. Of course P0 is an opin-
ionated extension of P , so that the upwards u-propriety of u and Fact 3.2 entails 

0 0( )] ( )][ [PP P P
 E Eu u≥ . But ( )] , 1)[ (1P P

 E u =u , and 
0 0( )] (1, 1) 0 0)[ ( ,P PE u = +u u , and 

thus u(0, 0) ≤ 0. A similar argument shows that if u is strictly upwards u-proper, 
then u(0, 0) < 0.

To establish the other direction, fix P and let P* be an opinionated extension 
of P. For each s ∈ πP, let s* be the unique t ∈ πP* such that t ⊆ s and P* (t) ≠ 0, and 
let ns = |{t ∈ πP* : t ⊆ s}|.
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Note now that

[ ( ( )) ( ( )) ( 1) (0, 0).( )]
P PP

P
t s s

sP P t P s nf f*

*

* * * *å å åE
∈ ∈ ∈

= = + − ⋅
π π π

u uu u

And since clearly
( ( )) [ ( )],

P

P
s

P s Pf * *å E
∈

=
π

u u

u(0, 0) ≤ 0 (resp. u(0, 0) < 0) entails that ( )] ([ [ )]PP P P*
*E Eu u≥  (resp. 

( )] ([ [ )]PP P P*
*E Eu u> , and hence, using Fact 3.2, we can conclude that u is 

upwards u-proper (resp. strictly upwards u-proper). □
Now, it is well-known28 that if u a proper local accuracy measure (resp. 

strictly proper), the function fu is convex (resp. strictly convex), in the sense that 
for each α ∈ (0, 1) and x, y ∈ [0, 1],

( (1 ) ) ( ) (1 ) ( )x y x yf f f+ − ≤ + −α α α αu u u

(resp. the above inequality is always strict). And it is well-known (see, e.g., 
 Bruckner 1962) that for a convex f over [0, 1], f(0) < 0 (resp. f(0) < 0) iff f is superaddi-
tive (resp. strictly superadditive), in the sense that for x, y ∈ [0, 1] with x + y ∈ [0, 1],

( ) ( ) ( )f x y f x f y≥+ +

(resp. the above inequality is always strict). Since by definition of , (0) (0, 0)f f =u u u , 
we can put all these observations together with Theorem 3.14, to establish the 
following analogue Theorem 3.13:

Corollary 3.15. An additive accuracy measure u is upwards u-proper (resp. strictly 
upwards u-proper) iff its local accuracy measure u is proper and fu is superadditive 
(resp. strictly superadditive).  □

To conclude this section, let me state one final characterization result, this 
time for the class of upwards l-proper additive accuracy measures.

Theorem 3.16. A continuous, additive accuracy measure u with a strictly proper local accu-
racy measure u is upwards l-proper (resp. strictly upwards l-proper) iff for each z ∈ [0, 1] there 
are x, y ∈ [0, 1] with x + y = x and fu(x + y) ≥ fu(x) + fu(y) (resp. fu(x + y) > fu(x) + fu(y)).

Proof. We know from Fact 3.11 that u is upwards l-proper iff for each P and each 
π  πP there is P* ∈ [P]π such that

( ( )][ )] [ ,P PP P*
*E Eu u≥

28. The canonical reference here is Savage (1971: §4). See also Theorem 2 in Gneiting and
Raftery (2007).
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and that u is strictly upwards l-proper iff the above inequality is always strict 
whenever π ≠ πP. For the left-to-right direction, assume u is upwards l-proper 
(resp. strictly upwards l-proper). Given z ∈ [0, 1], take P defined over a two-celled 
partition {s0, s1} with P(s0) = z and take a three-celled refinement 0 1

0 0 1{ , , }ss s=π  of πP. 
From Fact 3.11 we know that there is some P* ∈ [P]* such that [ )]( ( )][PP P P*

*E Eu u≥  
(resp. [ )]( ( )][P PP P*

*E Eu u≥ ). Let 0
0( )x P s*=  and 0

1( )y P s*= , and note that the above 
inequality entails that ( ) ( ) ( )x y x yf f f+ ≥ +u u u .

For the right-to-left direction, start by fixing P, π  πP with |π| – |πP| = 1, and 
let s* ∈ πP and 0 1, ss* * ∈π  be such that 0 1ss s* * *È= . Let z = P(s*) and fix x, y ∈ [0, 1] 
with x + y = z such that ( ) ( ) ( )z x yf f f≥ +u u u . Let P* be the unique extension of P to 
π that assigns probability x to 0s*, and note that, letting s range over πP,

[ )] ( ) (( ( ))P

s s

P x y P sf f
*

åE u
≠

= + +u u

and
[ )] ( ) ( ) ( ( )),(P

s s

P x y P sf f f*

*

* åE u
≠

= + +u u u

whence [ )]( ( )][P PP P*
*E Eu u≥ . A simple induction argument on the size of |π| – 

|πP| allows us to conclude that for each π  πP there is P* with [ )]( ( )][P PP P*
*E Eu u≥ , 

and thus that u is upwards l-proper. Parallel reasoning shows that if for each 
z ∈ [0, 1] there are x,y ∈ [0, 1] with x + y = z such that ( ) ( ) ( )x y x yf f f+ > +u u u , u 
is strictly upwards l-proper.
  □

Surprisingly, it follows from this that for additive accuracy measures, 
upwards u-propriety and l-propriety coincide:

Corollary 3.17. A continuous, additive accuracy measure u with a strictly proper accu-
racy measure is upwards l-proper (resp. strictly upwards l-proper) iff it is upwards 
u-proper (resp. strictly upwards u-proper).

Proof. Apply Theorem 3.16 with z = 1, to conclude that if u is upwards l-proper 
(resp. strictly upwards l-proper), then fu(0) ≤ 0, since 

(1) (1 0) (1) (0).f f f f= + ≥ +u u u u

Using Theorem 3.14, we conclude that u is upwards u-proper. Strictly parallel 
reasoning shows that if u is strictly l-proper, then it is strictly upwards u-proper.
� □

4. Imprecise Probabilities and Partial Credence Functions

According to the standard, Bayesian picture we have been taking for granted, an 
agent’s epistemic state can be adequately represented with a single probability 
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function. But many think this is a mistake: on their view, an agent’s epistemic 
state is best represented not with a single probability function but with a set 
thereof. This view can model any agent the more standard Bayesian picture can 
equally well—identify each probability function with its singleton set. But it is, 
at least on the face of it, more flexible. It can, for example, represent the kind 
of epistemic state most of us are arguably in with respect to the proposition 
that the last person to arrive in Australia in the year 2000 was wearing a white 
shirt: a state that seems hard to represent by assigning any one number to that 
proposition.

Grant that proponents of this dissenting view are right—grant, in other 
words, that one can be in the kind of epistemic state that is better modeled with a 
set of probability functions than with a single probability function.29 An interest-
ing question is whether it is ever epistemically rational to be in the kind of state 
that cannot be aptly represented with a unique probability function.

There has been much debate around this question and it is not my purpose 
here to take a stance either way.30 But a family of related and interesting results 
that emerged from this debate bear some resemblance to the results established 
in this paper and it is worth clarifying exactly how they differ from my results.31

In the literature on epistemic utility theory, it is by and large taken for granted 
that something like the following principle captures an important relationship 
between epistemic utility and epistemic rationality:32

29. Cf. Joyce (2010: 283): “It is rare, outside casinos, to find opinions that are anywhere near 
definite or univocal enough to admit of quantification. An agent with a precisecredence for, say, 
the proposition that it will rain in Detroit next July 4th should be able to assign an exact ‘fair price’ 
to a wager that pays $100 if the proposition is true and costs $50 if it is false. The best most people 
can do, however, is to specify some vague range.”

30. See, e.g., Levi (1974), Joyce (2005), White (2010). For a helpful overview of this vast body 
of literature, see Bradley (2019).

31. See, e.g., Schoenfield (2017), Seidenfeld, Schervish, and Kadane (2012), Berger and Das 
(2020), Mayo-Wilson and Wheeler (2016), Konek (in press).

32. I say ‘something like’ because the principle as stated is in need of clarification and argu-
ably subject to a number of powerful objections. For one thing, we need to clarify whether the prin-
ciple holds for any admissible measure of epistemic utility, or whether it needs to be understood 
as quantifying over all admissible ways of measuring epistemic utility—Schoenfield (2017) opts 
for the latter, in formulating a principle she calls ‘Permission’, but Pettigrew (2016) opts for the 
former (see especially his discussion of the well-known ‘Bronfman objection’ in ch. 5). (As stated, 
the principle is perhaps closest to what Joyce 2009 calls ‘Admissibility’.) For another, the principle 
might be subject to counterexamples in cases where every credence function suffers from a similar 
defect—if any credence function is dominated by another, say (if for any P there is some P’ that has 
always at least as much and sometimes more epistemic utility than P), we may think some domi-
nated credence functions are rationally permissible, even if not rationally required (see again the 
formulation of ‘Permission’ in Schoenfield 2017). Other, weaker alternatives to Dominance include 
the principles Pettigrew (2016) calls ‘Undominated Dominance’ and ‘Immodest Dominance’, as 
well as the principle that Joyce (1998) relies on in his argument for Probabilism—the principle 
 Pettigrew (2016) calls ‘Dominance’, which is weaker than what we are calling ‘Dominance’.
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Dominance: If for any world w, the epistemic utility of P at w is strictly lower 
than that of P’ at w, and if for some world w, the epistemic utility of P at 
w is strictly less than that of P’ at w, then P is epistemically irrational.

So, much attention has been paid to the question what kinds of reasonable epistemic 
utility functions can be defined that allow us to compare the epistemic utility of a 
‘precise’ credence function at a world with that of an ‘imprecise’ one—here we think 
of sets of probability functions as ‘imprecise’ or ‘indeterminate’ credence functions 
since for many propositions they do not determine a unique degree of credence. 

For example, generalizing some results in Schoenfield (2017), Berger and Das 
(2020) have argued that for any imprecise credence function there is a precise 
credence function that is at least as accurate relative to any world—at least given 
some assumptions about what a measure of accuracy must be like. And this, 
at least if we think that epistemic utility functions should be measures of accu-
racy, arguably shows that no epistemic utility function can be strictly upwards 
l-proper, and a fortiori that no epistemic utility function can be strictly univer-
sally l-proper or strictly universally u-proper.

To see why, note that for a fixed π and a refinement π′ of π, we can iden-
tify any probability function P defined over π with an imprecise probability 
function defined over π′—essentially, we identify P with [P]π (see footnote 
17). Berger and Das’s results can then be used to show that on any reason-
able measure of accuracy, for any P defined over π there is some P’ defined 
over π’ that is as accurate as P relative to any state of the world. Thus, if we 
identify epistemic utility functions with measures of accuracy satisfying their 
constraints, their result can be used to show that for any π, any refinement π′ 
of π, and any P defined over π, there is P′ defined over π′ such that for any w, 
the epistemic utility of P at w equals that of P′ at w. And this in turn would 
suffice to show that there are no strictly upwards l-proper epistemic utility 
functions.

Now, we can first observe that in a sense my results are more general, in 
that they do not make any substantive assumptions about epistemic utility func-
tions—at most, we assume that epistemic utility functions are continuous and 
truth-directed.33 I do not, for instance, assume that epistemic utility is atomistic 
(I do not assume that the epistemic utility of a credence function at a world is 
determined by the utility of the individual credence assignments that make up 
that credence function at that world), nor that it is extensional (I do not assume 

33. An additional assumption, worth pointing out since it may go unnoticed, is that epis-
temic utility functions are real-valued. For a way of thinking about epistemic utility for imprecise 
probabilities that does without this assumption—a view on epistemic utility on which imprecise 
probabilities are only partially ranked in terms of epistemic utility relative to any world—see 
Seidenfeld et al. (2012).
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that the epistemic utility of a credence function at a world is independent of the 
content of the propositions it assigns credence to).34

But there is a more significant difference between my results and those from 
the literature on imprecise probability functions. The question at the center of 
impossibility results for imprecise probability functions takes as given a fixed 
partition and asks whether there are reasonable ways of measuring accuracy or 
epistemic utility for that partition that will sometimes have imprecise probability 
functions doing better than precise probability functions. And one assumption all 
in the literature seem to take for granted—an assumption which seems perfectly 
natural given the presuppositions of the question—is that any reasonable mea-
sure of accuracy for a given partition π should satisfy the following constraint:35

Perfection: For any w, there is a credence function Pw that has maximal epis-
temic utility with respect to π: the epistemic utility of any credence func-
tion, precise or not, defined over π and different from Pw, is strictly less 
than that of Pw.

To get a handle on what Perfection says, it helps to focus on a simple case with 
a two-cell partition π* = {s1, s2}. Take some world w ∈ s1 and consider the credence 
function Pw that assigns 1 to s1 and 0 to s2. It seems natural to say that, with respect 
to π*, any credence function different from Pw has lower epistemic utility, at w, 
than Pw has. In particular, relative to w, any (non-trivially) imprecise credence func-
tion—any set of probability functions defined over π with more than one element—
is worse, epistemically and with respect to π*, than Pw. After all, relative to w, Pw has 
a legitimate claim to being as good as it gets, epistemically with respect to π*.

Now, in this paper I have not trafficked in anything quite like the notion of 
epistemic utility relative to a partition. So it is not completely straightforward to 
translate Perfection into a constraint on the kind of epistemic utility functions 
we have been interested in. But there is a somewhat natural way to recast Perfec-
tion into a constraint on generalized epistemic utility functions in my sense. And 
once we see what that constraint amounts to, we will see both that it is not quite 
so plausible (as a constraint on generalized epistemic utility functions) and that 
my results do not depend on it.

Recall that in comparing the discussion of imprecise probability functions 
over a partition with my discussion of credence functions whose domain does 
not include elements of that partition, I identified a (precise) credence function 
defined over a coarsening π′ of π with an imprecise credence function defined 

34. The results in Seidenfeld et al. (2012) and Schoenfield (2017) rely on similar assumptions.
35. Cf. the principle Schoenfield calls ‘Boundedness’ (2017: 672), and what Berger and Das 

call ‘Local Boundedness’ (2020: 13), a principle which is implicitly assumed in Seidenfeld et al. 
(2012) (see, e.g., the proof of their Proposition 5 at p. 1256).
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over π. Hence, saying that P is better, epistemically and relative to w, than any 
imprecise credence function defined over the same domain as P, entails that for 
any coarsening of π, P is better, relative to w, than any other credence function 
defined over that coarsening. So in my framework, Perfection amounts to the 
claim that relative to any π, any non-trivial coarsening π′ of π, and any w, there 
is some credence function Pw defined over π that is better, epistemically relative 
to w, than any credence function defined over π′. Equivalently, in my framework 
Perfection amounts to the claim that for any partition, any world w, and any 
refinement of π, there is a credence function defined over that refinement that is 
better relative to w than any credence function defined over π:

Refinement: For any π, any refinement π′ of π, and any w, there is wP ¢π  defined 
over π′ such that for any P defined over π, ( , ) ( , )wP w P wu u>π .

Now, it should be clear that my results do not depend on anything like 
Refinement. After all, Refinement rules out as admissible any upwards u-proper 
epistemic utility function, whereas my assumptions are compatible with the 
admissibility of such epistemic utility functions. So, strictly speaking, this is 
another sense in which my results are more general. But it is worth highlighting 
that, whereas in the discussion of imprecise probability functions something like 
Refinement may well be uncontroversial, in the present context it is far from it.

The constraint imposed by Refinement is incompatible with thinking of some 
refinements as an unalloyed epistemic bad: if epistemic utility satisfies Refinement, 
there can be no proposition such that that you are epistemically worse off no matter 
what when you come to form an opinion on that proposition. Whether it be a prop-
osition about phlogiston, or about miasma, Refinement entails that it is always in 
principle possible to do better, epistemically, by forming a view on that proposition.

Of course, it may be that this is the right way to think about epistemic util-
ity, but it is certainly not obviously the right way to think about it. One might, for 
example, think that there is an ideal language for theorizing about the world, and 
that the ideal epistemic state is the one that is maximally accurate with respect to 
propositions expressible in that ideal language and simply fails to even entertain 
hypotheses that cannot be formulated in that language. If that’s how we think 
about epistemic utility, we will want to reject Refinement.36

At any rate, it is not my goal here to suggest that the right way to think about 
epistemic utility is incompatible with Refinement. But I do want to point out that 

36. Note that this view is incompatible with Extensionality—the thesis that the epistemic util-
ity of a credence function at a world is independent of the content of the propositions it assigns 
credence to. Indeed, it may be that a commitment to Extensionality all but requires a commitment 
to Refinement.
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it is yet another substantive assumption about epistemic utility that is required 
for the impossibility results mentioned above to go through. In contrast, my 
results make no substantive assumptions about epistemic utility. Rather, they 
establish that no matter how we think of epistemic utility, there are hard limits 
on the degree of immodesty we can expect to come from epistemic rationality.37

5. Conclusion

In contexts where probability functions are stipulated to all be defined over a 
fixed domain, strictly proper epistemic utility functions arguably capture a cer-
tain kind of immodesty. Once we move on to contexts where probability func-
tions are allowed to be defined over different domains, strictly proper epistemic 
utility functions do not capture the relevant sense of immodesty. My question 
was whether there was a way of characterizing immodesty in this general set-
ting. I considered a variety of strong, generalized immodesty principles and 
showed that, under minimal assumptions, no epistemic utility function satisfies 
any of these stronger immodesty principles.

I also considered some very weak generalizations of strict propriety and 
showed that some of the familiar epistemic utility functions satisfy one or another 
of these weak immodesty principles. One interesting question left outstanding 
is how strong an immodesty principle can be imposed without ruling out every 
reasonable epistemic utility function. In particular, one interesting question is 
whether there are immodesty principles that distinguish among partitions—say, 
immodesty principles that say that for any partition of a certain kind, all cre-
dence functions defined over that partition take themselves to be doing better, in 
terms of epistemic utility, than any of their restrictions without thereby taking 
themselves to be worse than any of their extensions.

37. I should add that whereas my results rely on much weaker assumption than those from 
the literature on imprecise credence functions, they are not stronger than them, since the conclu-
sions they derive from their stronger assumptions are stronger than those we derive from my 
weaker assumptions. For instance, as mentioned above, Berger and Das show that, given their 
assumptions on epistemic utility functions, for any imprecise credence function there will be pre-
cise credence function with the same domain that is as good, epistemically, as the imprecise cre-
dence function relative to any world. The analogous conclusion, in my framework, would be that 
for any credence function P defined over some partition π, and any refinement π’ of π, there is a 
credence function defined over π′ that is as good, epistemically, as P relative to any world. Without 
any additional assumptions on what epistemic utility functions are like, this cannot be guaranteed. 
(For one thing, without additional assumptions, we could have epistemic utility functions that 
make any credence function defined over π dominate any credence function defined over π′.) It is 
an interesting question, beyond the scope of this paper, what additional constraints on generalized 
epistemic utility functions are needed to establish this analogous result.
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I have not, of course, argued that epistemic utility functions ought to satisfy 
any of these stronger immodesty principles. But it is at the very least not obvi-
ous that strict partition-wise propriety suffices to capture the sense in which 
epistemic rationality is said to be immodest. What else, if anything, suffices to 
capture that kind of immodesty is a question for some other time.
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Appendix

My proof of Lemma 3.10 will rely on a fundamental result in game theory, which 
I will simply state without proof.38 Before stating the result, I need to introduce 
some minimal background.

A two-person, zero-sum game (henceforth, a game) is a triple ( , , )A B f = , where 
A is the set of pure strategies for player I, B is the set of pure strategies for player 
II, and  :f A B´ ® R  is a payoff function. When player I chooses to play a ∈ A and 
player II chooses to play b ∈ B, player I gets f (a, b) from player II if f (a, b) > 0 and 
gives player II – f (a, b) if f (a, b) < 0 (nothing is exchanged if f (a, b) = 0, and let’s 

38. My proof strategy follows some of the reasoning in the first five sections of Grünwald
and Dawid (2004).
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not bother to think of an ‘intuitive’ interpretation of a situation in which f (a, b) 
is non-finite).

The lower value of the game, V  is defined as

sup inf ( , ).:
b Ba A

f a bV
∈∈

=

This is the maximum payoff that player I can guarantee, since for each a ∈ A,

inf ( , )
b B

f a b
∈

is the best player I can do. The upper value of the game, V  is analogously defined 
as

: inf sup ( , ).
a Ab B

V f a b
∈∈

=

In general,

.V V≤

We say that   has a value iff

.V V=

If a game has a value, we say that player I has an optimal strategy iff there is a* ∈ 
A that achieves

sup inf ( , ).
b Ba A

f a b
∈∈

Similarly, we say that player II has an optimal strategy iff there is b* ∈ B achieving

inf sup ( , ).
a Ab B

f a b
∈∈

If the game has a value and both players have an optimal strategy, the pair of 
optimal strategies corresponds in an intuitive way to an equilibrium in the game—
a pair of strategies such that neither player prefers unilaterally deviating from it. 
Such a pair of strategy is called a saddle-point—thus, a saddle point in a game  is 
a pair of strategies (a*, b*) such that for all a ∈ A, b ∈ B, f (a, b*) ≤ f (a*, b*) ≤ f (a*, b).

Not all games have a value. Some of the foundational results in game theory 
allow us to characterize classes of games that have a value. I will be relying on 
one such result for the proof of Lemma 3.10.

Recall that a function f on a vector space that takes values in R  is convex iff 
for each λ ∈ (0, 1), λ f (x) + (1 – λ) f (y) ≥ f (λ x + (1 – λ)y) whenever the term on the 
left hand side is well-defined. We say that f is concave iff – f is convex, and that f is 
affine iff it is both convex and concave.

If X is a topological space, we say that a function :f X ® R is upper-semi-
continuous (or u.s.c.) iff f < ∞, and for each r ∈ X, the set {x ∈ X : f (x) ≥ r} is closed 
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in X. We say that f is lower-semi-continuous (or l.s.c.) iff f > –∞ and for each r ∈ R, 
the set {x ∈ X : f (x) ≤ r} is closed in X. (Here we follow Mertens, Sorin, and Zamir 
2015.) Of course, f is u.s.c. iff – f is l.s.c. The result below is essentially Sion’s mini-
max theorem (Sion 1958).39

Theorem A.1. Let A and B be two convex topological spaces and suppose :f A B® R×  
is concave and u.s.c. on the first argument, and convex and l.s.c. on the second—that 
is, for any b ∈ B and a ∈ A, f (x, b) and – f (a, y) are concave, u.s.c. functions of x and y 
(respectively). Then the game ( , , )A B f =  has a value. If A and B are compact, then the 
game has a saddle-point.  □

We can apply Theorem A.1 to show that, whereas many games of interest do 
not contain a saddle-point, if we allow players to randomize their choice of strat-
egy, the resulting game does have a saddle-point. Let me explain.

For any compact nX R⊆ , let Δ(X) denote the space of all Borel probability 
functions on X—the space of all countably additive probability functions on X 
whose domain is the smallest σ-algebra that contains all the open subsets of X. 
Of course, Δ(X) is a convex set, and from the fact that X is a compact subset of 
Euclidean space, we know that Δ(X) is compact.40

Now, fix ( , , )A B f = , with nA R⊆  and mB R⊆  compact. We say that 
( , , )A B f* * * * =  is a mixed extension of   iff A* (resp. B*) is a closed and convex 

subset of Δ(A) (resp. Δ(B)) and, for any α ∈ A*, β ∈ B*, 

~ ~( , ) ( , ).X Yf f X Y* E Eα βα β =

Since each a ∈ A (resp. b ∈ B) can be identified with the unique probability func-
tion αa ∈ Δ(A) (resp. βb ∈ B) that assigns probability one to {a} (resp. {b}), I will 
abuse notation and think of f * as also defined over elements of A × B.

If f is continuous and f < ∞, f * is concave (since linear) and u.s.c. on the first 
argument and convex (since linear) and l.s.c. on the second. And since any closed 
subset of a compact topological space is compact, we know that A* and B* are 
compact and convex topological spaces. So we can apply Theorem A.1 to show 
that any mixed extension *  has a saddle-point.

Corollary A.2. Suppose nA R⊆  and mB R⊆  are compact and :f A B® R×  is sepa-
rately continuous. If f < ∞, then any mixed extension of ( , , )A B f =  has a saddle-
point.  □

I can finally present the proof of Lemma 3.10.

39. See, e.g., (Mertens et al. 2015: Theorem i.1.1.) for a proof.
40. See, e.g., (Kechris 1995: Theorem 17.22).
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Proof of Lemma 3.10. Suppose u is a continuous epistemic utility function that is 
partition-wise strictly proper. Fix a probability function P and a refinement π of 
πP. We define a game ( , , )P A B f =  as follows. First, let N = |π|, fix an enumera-
tion {Si} of π, and let A be those elements of NR  of the form 1( ), ( )NQ s Q sá ¼ ñ for 
Q ∈ π . Abusing notation, I will use Q, Q′, etc. to denote elements of A, even 
though I will think of them as members of NR . Next let 

: { : ( ) 1 for some }.iB Q A Q s i= ∈ =

Again abusing notation, I will use s1, s2, ⋯, sN to denote the elements of B in the 
obvious way (with si corresponding to that Q ∈ A assigning probability 1 to si). 
Finally, let 

( ) ( ), , .i if Q s Q su=

Note that A and B are compact subsets of NR , and since u < ∞, we know that any 
mixed extension of P  has a saddle point.

Our next step is to define a particular mixed extension of P  and apply  Corollary 
A.2. Before doing so, however, let me make a couple of observations. First, any ele-
ment of Δ(A) corresponds to a probability function over π . I will use μ, μ’, etc. to 
denote elements of Δ(A), and will continue to abuse notation and use Q, Q’, etc. to 
denote the element of Δ(A) that assigns probability 1 to the corresponding element 
of π . Second, any element of Δ(B) corresponds to a probability function over π. I 
will thus abuse notation and use Q, Q’, etc. to denote elements of Δ(B).

Let now A* = Δ(A) and B* = [P]π, and note that B* is indeed a subset of Δ(B). 
Moreover, both A* and B* are closed and convex subsets of Δ(A) and Δ(B) (respec-
tively), so that ( , , )P A B f* * * * =  is indeed a mixed extension of P , with

~( , ) )],([QXf Q X* uE E= μμ

and accordingly ( , ) ]([ )Qf Q Q Q* ¢ ¢E u= .
From Corollary A.2, we know that our game P

*  has a saddle point (μ*, P̂). We 
claim that this saddle point is in fact of the form (P̂, P̂). To see why, note that since 
μ* is an optimal mixed strategy for player I, it follows that for any Q ∈ π ,

ˆ( , ) ( , ),ˆf Q fP P* * *≤ μ

and thus that 

ˆarg max ( , ) 1.
Q

Pf Q* *æ ö÷ç ÷ç ÷ç ÷çè ø∈
=

π

μ

But since u is strictly partition-wise proper, 

( ˆ ˆa ,rg ma ) }.x {
Q

Pf PQ*

∈
=

π
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Summing up, we have a saddle point of the form (P�, P� ), and thus we know that 
for any P* ∈ [P]π and any Q ∈ π ,

( , ) ( , )ˆ ˆ , )ˆ(ˆ .P P P Pf Q f f P* * * *≤ ≤

In other words,

 
ˆ ˆ ˆ[ )] [ )] for ( ,( all P PQ QP u uE E≤ ∈ π  (10)

and
 ˆ [ )] [ )] for all [ˆ( ]ˆ( .PP P P P P*

*E Eu u≤ ∈ π  (11)

But note that (10) entails both

ˆ [ )] [ )]ˆ ˆ( ,(PP P Pu uE E=  (12)

by definition, and

ˆ [ )] [ˆ( ( for all [ ] ,)]P P P PP P*
* *E Eu u≤ ∈ π  (13)

since u is partition-wise proper.
Hence, from (11), (12), and (13), we have that for any P* ∈ [P]π and any Q ∈ π , 

ˆ ˆ[ )] [ )] [ˆ ˆ( ( ( ( )])] [ ,P P PPQ P P P*
*E E Eu u u uE≤ = ≤

as desired.
� □




