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Securing Arithmetical Determinacy
S E B A S T I A N  G . W . S P E I T E L 
University of Bonn

The existence of non-standard models of first-order Peano-Arithmetic (PA) threatens 
to undermine the claim of the moderate mathematical realist that non-mysterious 
access to the natural number structure is possible on the basis of our best arithmetical 
theories. The move to logics stronger than FOL is denied to the moderate realist on the 
grounds that it merely shifts the indeterminacy “one level up” into the meta-theory 
by, illegitimately, assuming the determinacy of the notions needed to formulate such 
logics. This paper argues that the challenge can be met. We show how the quan-
tifier “there are infinitely many” can be uniquely determined in a naturalistically 
acceptable fashion and thus be used in the formulation of a theory of arithmetic. We 
compare the approach pursued here with Field’s justification of the same device and 
the popular strategy of invoking a second-order formalism, and argue that it is more 
robust than either of the alternative proposals.

1. Introduction

Mathematical realists hold that the statements of mathematics are determinately 
true or false and that they are so because of the mathematical objects, 
properties and relations referred to in these statements. Naturalistically minded 
mathematical realists, so called moderate mathematical realists, additionally 
demand that reference to the objects and structures responsible for the truth or 
falsity of mathematical statements be achieved through scientifically acceptable, 
non-mysterious means.

Moderate realists face a sceptical challenge: to explain how, given the 
abstract nature of mathematics, successful reference to mathematical structures 
and entities is possible without invoking scientifically unacceptable means. 
How, that is, reference of mathematical terms can be successfully fixed so as to 
afford determinacy of truth-value without invoking a scientifically unsupported 
“mathematical sense.” The natural reply that reference is achieved through 
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description of the relevant structures by our best mathematical theories is under-
mined by the fact that the usual languages used to formulate these theories are 
insufficient to guarantee determinate reference.

An attractive option for the moderate mathematical realist consists in 
moving to a richer framework in which it is possible to establish categoricity 
theorems. These results demonstrate that her theories uniquely fix the meanings 
of the mathematical terms and thus successfully achieve determinate reference. 
Unfortunately, this line of response appears to only exacerbate the original issue, 
for the referential determinacy of the resources required to achieve categorical 
characterizations of important mathematical theories, such as arithmetic, is itself 
in need of justification. Compounded by the fact that these resources are often 
much more complex than the notions whose reference they are used to fix, it is 
highly questionable whether the realist can legitimately appeal to them in her 
response to the sceptic without begging the question. This leaves the moderate 
mathematical realist in a vulnerable position.

The goal of this paper is to investigate the determinacy challenge against the 
moderate realist and argue that it can be met. It aims to show that the scepti-
cal attack levelled against the resources appealed to by moderate mathematical 
realists to achieve a categorical characterization of arithmetic can be successfully 
answered through use of the generalized quantifier “there exist infinitely many.”

The structure of the paper is as follows: §2 will outline the sceptical challenge 
for the moderate mathematical realist and sketch two well-known responses to 
it, one in terms of the generalized quantifier logic ℒ(Q0), the other in terms of 
second-order logic (SOL). §3 constitutes the core of this paper and presents my 
defense of the use of ℒ(Q0) in defusing the sceptical challenge. §4 compares this 
strategy with two existing approaches addressing the same issue: a defense of 
ℒ(Q<𝜔𝜔) by Field (1994; 2001) and a defense of SOL by Murzi and Topey (2021). 
§5 concludes. A short appendix contains the proofs of the results referred to in 
the main part of the paper.

2. The Skeptical Challenge for the Moderate Realist

The challenge for the realist derives from the fact that mathematical entities 
unlike, say, botanical entities, are abstract and thus inaccessible through any of 
the (accepted) senses. The moderate realist about arithmetic thus needs to sup-
ply a story of how successful reference to the natural number structure1 can be 

1. As is common, we identify mathematical structures with isomorphism types, i.e., classes of 
structures closed under isomorphism. The natural number structure is thus the class consisting of 
all structures isomorphic to ℕ. Slightly abusing terminology we also refer to this class itself as ℕ.
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achieved without resorting to a scientifically unwarranted mathematical sense.2 
The natural reply that determinate reference is achieved through description, 
by means of our (best) mathematical theories of the structures we wish to talk 
about, is immediately met with a demand for the specification of the resources 
involved in formulating the respective theories. Here, the moderate realist avails 
herself of the apparatus of first-order logic (FOL) combined with a model-theo-
retic semantics, causing the skeptical challenge to gather pace.3

2.1. Non-standard Models of Arithmetic

Achieving determinate reference to the natural-number structure amounts, in 
the context of model-theory, to the demand that our best theory of arithmetic be 
categorical, that it “pick out” a unique isomorphism-type.4 If the framework in 
which such a theory is formulated is that of first-order logic (FOL) this demand can-
not be met: the expressive resources of FOL are too limited to rule out non-standard 
models of arithmetic, i.e., models that satisfy our best first-order description of the 
natural number structure (say, for concreteness, Peano-Arithmetic (PA)) but that 
are not isomorphic to ℕ.

The inability of FOL to categorically characterize the natural-number struc-
ture runs deep: Button & Walsh (2018: 161) show that no compact logic5 is capable 
of rendering a theory of arithmetic categorical, for in any such logic it is possible 
to add non-standard elements (e.g., infinitely large numbers) to the standard 
model of arithmetic to create an elementarily equivalent non-standard model. 
Compactness and its close relative, completeness, are highly priced properties of 
logical systems. The crucial question taken up below concerns whether they are 
necessary to possess a determinate grasp of a notion.

This, then, is the issue in a nutshell: a framework like that provided by FOL 
is “too weak” to uniquely pin down the standard model of arithmetic (up to 
isomorphism) and thus to ensure determinate reference of arithmetical terms. 

2. This has been termed the doxological (Button and Walsh 2018) or metasemantic (Warren and 
Waxman 2020) challenge for the mathematical realist. See (Button and Walsh 2018) for an authori-
tative presentation which we are following closely.

3. Skeptical challenges regarding determinacy of reference are nothing new for the math-
ematical realist (see, e.g., (Benacerraf 1965)). They remain extremely pervasive and arise not just at 
the level of reference to individual mathematical objects (“the number 2”), but also at the level of 
entire mathematical structures (“the natural number structure”). It is this latter type of (in)deter-
minacy that is at issue in the current paper and most of the debate at large.

4. See any introduction to model-theory for precise definition of this concept. A desirable 
consequence of categoricity is that categorical theories are complete, i.e., for any sentence 𝜑𝜑 of the 
language of the theory T, if T is categorical then either T ⊧ 𝜑𝜑 or T ⊧ ¬𝜑𝜑. Hence, a categorical theory 
ensures determinacy of truth-value for any sentence of the language.

5. A logic is compact if, whenever Γ ⊧ 𝜑𝜑, there already exists a finite Γ0 ⊆ Γ, s.t. Γ0 ⊧ 𝜑𝜑.
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FOL, however, is just an instrument used to formally codify antecedent beliefs 
of mathematicians about the properties of the mathematical structure ℕ. What 
the lack of categoricity of PA seems to show is that a first-order formalization of 
arithmetic is unable to properly capture all of the mathematician’s antecedently 
held beliefs about that structure, that she believes or knows more about it than 
what can be adequately expressed in the confines of FOL.

There are two prominent diagnoses of the shortcoming exhibited in the 
admission of non-standard models and, correspondingly, two ways to address 
this perceived deficiency. Each motivates one of the enrichments of the formal-
ism of FOL discussed in the next subsection. The first consists in maintaining 
that we know more about the subsets of ℕ than FOL says we know. This analysis 
corresponds to a move to SOL with its quantification over subsets and a strength-
ening of the induction-schema of first-order PA. The second points out that the 
non-standard models of PA rely on a “misshapen” number sequence and claims 
that we have a firmer hold on the notion and properties of an 𝜔𝜔-sequence (i.e., 
a progression of elements mirroring the natural number sequence) than FOL 
admits. This diagnosis naturally corresponds to the use of a formalism—exem-
plified by ℒ(Q0) below,—that permits the moderate mathematical realist to 
adequately express more features of such a sequence than can be done in FOL.6

2.2. Categorically Characterizing Arithmetic

Given the limitations of FOL against the standard framework of model-theory 
how can the moderate realist claim to unambiguously refer to the natural num-
ber structure, the isomorphism-class of ℕ? There are several ways in which she 
might strengthen or modify FOL to achieve this goal. We will briefly survey the 
two approaches that we wish to contrast in the following: (i) second-order logic 
(SOL) and (ii) ℒ(Q0)—FOL extended by the generalized quantifier “there exist 
(in)finitely many.”7

(i)	 Second-order Logic (SOL)
	 The formalism of second-order logic is like the formalism of FOL, except 

that it also contains predicate variables X,Y,Z in addition to individual 
variables x, y, z and existential and universal quantifiers that bind these 
predicate-variables. Semantically, these quantifiers range over subsets/

6. There are many more ways to achieve categorical characterizations of arithmetic by 
strengthening the formal framework or imposing additional constraints on interpretations. For 
overview and discussion see (Button and Walsh 2016; 2018).

7. See (Shapiro 1991) for an introduction to second-order logic and (Barwise and Feferman 
1985) for a study of generalized quantifier logics.
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appropriate relations over the domain of a model, though there is space 
for variation: in a full semantics the quantifiers are taken to range over the 
full powerset of the appropriate Cartesian product of the domain. In a 
Henkin-semantics the quantifiers range over a subset thereof, subject to cer-
tain closure conditions (see (Shapiro 1991) or (Väänänen 2021a) for details).

	 PA2, Peano-Arithmetic in second-order logic, is just like PA, except that 
the induction-schema of PA can now be expressed by means of the  
single sentence:

	 ∀X[X(0) ∧ ∀x(X(x) → X(s(x))) → ∀xXx]

	 The difference in expressive resources, coupled with the “right” seman-
tics, matters, for it enables Dedekind’s Categoricity Theorem (see (Dedekind 
1888) and (Shapiro 1991)):

	 Theorem: Given full semantics, PA2 is categorical.

	 With the increase in expressive power goes along a loss in (attractive) meta-
logical properties: SOL with full semantics is not compact and its consequence 
relation is not recursively axiomatizable. SOL with Henkin-semantics, on 
the other hand, can be interpreted as an essentially first-order formalism 
and thus inherits all the strengths and weaknesses of FOL itself.

(ii)	The quantifiers there are finitely many and there are infinitely many
	 The concepts “finitely many” and “infinitely many” are not first-order 

definable. Adding a way to express either of these notions in FOL thus 
increases the expressive strength of the resulting system. This can be done 
through the device of a Lindström- or generalized quantifier (see (Peters and 
Westerståhl 2006)).

	 A (type ⟨1⟩) generalized quantifier is a (class-)function associating with 
every set a subset of its powerset. The quantifier “there exist finite-
ly many,” for example, is the function <𝜔𝜔 such that, for every set M: 
<𝜔𝜔(M) = {A ⊆M | |A| < 𝜔𝜔}. The quantifier “there are infinitely many” is 
the function 0, such that 0(M) = {A ⊆M | 𝜔𝜔 ≤ |A|}.

	 Adding a new type-appropriate quantifier-symbol Q to the language of 
FOL, with formation-rules for formulas containing it analogous to those 
involving the existential and universal quantifier, satisfaction is defined 
as follows (where  is a model with domain M):

	  ⊧ Qx𝜑𝜑(x) iff {a ∈M | ⊧ 𝜑𝜑(a)} ∈ (M)

	 In FOL extended with either of the quantifiers Q<𝜔𝜔 or 0 we can now ex-
press, in the language of arithmetic, that every element has only finitely 
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many predecessors: (F) ∀xQ<𝜔𝜔y (y < x) or ∀x¬Q0y (y < x). This suffices to 
rule out non-standard models of arithmetic, thereby providing for the 
categoricity of PA + (F) in ℒ(Q<𝜔𝜔) or ℒ(Q0), respectively.

	 The expressive strength of ℒ(Q<𝜔𝜔)/ℒ(Q0) falls somewhere between 
FOL and SOL. Compactness is lost and the consequence relation of 
ℒ(Q<𝜔𝜔)/ℒ(Q0) is not recursively axiomatizable. However, the logics 
ℒ(Q<𝜔𝜔) and ℒ(Q0) are still first-order in that only individual variables 
are bound and quantifiers “merely” range over the first-order domain 
of the respective model.

2.3. “Just more theory”

Adopting a logic more expressive than FOL, such as SOL or ℒ(Q0), appears to 
resolve the indeterminacy of reference to the natural number structure. Why 
should the move to a more powerful formal framework be denied to the moderate 
realist? The worry associated with the use of a logic substantially stronger than 
FOL is that one is making use of resources one cannot claim to have a firmer hold 
on than one has on ℕ itself. In other words, one might be accused of invoking 
notions reference to which is at least as problematic as reference to the natural 
number structure itself.

Dedekind’s Categoricity Theorem, for example, requires that the semantics of 
SOL be full. However, in virtue of what can we be certain that the range of the 
second-order quantifiers is the complete powerset of the domain rather than a 
(suitably inclusive) subset thereof, that the semantics is full, rather than Henkin? 
After all, nothing about the formalism itself forces the quantifiers to take on 
the full interpretation, its use is perfectly consistent with possessing a Henkin 
semantics. What is needed to guarantee the intended full interpretation—to show 
that we have secured determinate reference of the second-order quantifiers—is 
yet another categoricity theorem, a proof that the use of the formalism determines 
a unique semantics.

But this means that the issue of determinately referring to the natural 
number structure has not been solved; it has merely been shifted to the level of 
the semantics of the logic used to characterize it. This is far from resolving the 
original issue of referential indeterminacy:8

In trying to spell out why PA2 picks out the [standard model of arithme-
tic], our moderate modelist appeals to Dedekind’s Theorem … . In order 

8. See, e.g., (Weston 1976) and (Putnam 1980) for this observation. See (Button and Walsh 
2018: 158) for further references.
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for that Theorem to do the job she wants it to, she must have ruled out the 
Henkin semantics for second-order logic … . … And, so the worry goes, 
the distinction between full and Henkin models is just more theory, and 
hence up for reinterpretation. (Button and Walsh 2018: 159)

Similar worries apply in the case of ℒ(Q0): since Q0 is indefinable in FOL its 
semantics involves concepts that go beyond FOL, and the question arises how 
determinate reference to these is secured. This, coupled with the possibility of 
non-standard interpretations of the notion of infinity in the background theory 
(see (Field 1994: 397) and (Parsons 2007: §48)) adds force to the challenge of the 
model-theoretic sceptic.9

The move to logics stronger than FOL to achieve categoricity therefore seems 
to only “shift[…] the problem from the identification of postulates characterizing 
ℕ categorically (’completely’) into the semantics and model-theory of the logic 
used to state the postulates” (Read 1997: 91), and it is questionable whether any 
referential determinacy is gained through this. The “doxological challenge” 
confronting the moderate realist is lifted into the meta-theory—the bump 
in the carpet has merely been moved. How, then, in light of the possibility of 
non-standard interpretations of the notions and resources used to provide a 
categorical characterization of the natural number structure, can the moderate 
realist claim to achieve a firm grasp of these notions? Call this the revenge challenge 
for the moderate mathematical realist.

Button and Walsh (2018: 7.9) dispute the very possibility for success of a strategy 
that adopts a logic stronger than FOL to resolve the indeterminacy of arithmetical 
reference. The reason is that no logic that is compact will be able to categorically 
characterize ℕ. This means, they claim, that an “understanding of what conse-
quence amounts to according to any such logic must, then, come from a specifica-
tion of the formal semantics for that logic” (Button and Walsh 2018: 162). Yet, the 
notions involved in explicating the semantics of the kinds of logics needed far 
outstrip the resources of FOL and are thus, against a semantic theory formulated 
in FOL, “up for reinterpretation” (159). Thus, reference to the notions required 
to formulate the semantics of the logics needed to categorically characterize ℕ is 
inevitably as dubious, brute and mysterious as reference to the natural number 
structure was in the first place. Little has been gained by invoking stronger logics:

it will always be at least as hard for moderate modelists to explain how 
they grasp the intended semantics for the logic in question, as it is for 

9. Murzi and Topey (2021: n.16) remark that there is no essential difference between adopt-
ing SOL to solve the determinacy problem or any other logic using “essentially second-order 
notions,” such as, e.g., (in)finitude. For reasons that will become clear below we disagree with this 
assessment.
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them to explain how to pin down the “standard model” of arithmetic in 
the first place. (Button and Walsh 2018: 162)

Consequently, it is at least as difficult for moderates to explain how we 
can pin down those concepts, as it is for them to explain how we can pick 
out the isomorphism type of an 𝜔𝜔-sequence. (Button and Walsh 2018: 167)

The basis of Button & Walsh’s negative assessment of the prospects of a real-
ist strategy making use of a logic stronger than FOL is the insistence on the 
need for a semantic articulation of such logics. In doing so one will have to 
invoke mathematical notions determinate reference to which is as much in 
need of explanation as is reference to the natural number structure itself. The 
original question thus simply re-emerges “one level up,“ for one can ask in 
virtue of what determinate reference to these objects is achieved (Button and 
Walsh 2018: 164).

The claim that logics “strong enough to provide categorical theories of arith-
metic must be articulated semantically” is based on the non-axiomatizability of 
these logics that results from their incompactness, coupled with the idea that, to 
have a determinate grasp of a notion, it must be “completely specified.” There 
is, however, a different and arguably more natural way to conceive of what it 
means to have a determinate grasp of a notion. What is required to meet the 
revenge challenge is the provision of a characterization of the relevant notions 
of the logic together with a demonstration that this characterization suffices to 
uniquely fix them, that it, in other words, implicitly defines them. If no alterna-
tive interpretation is possible with respect to the provided characterization, the 
mathematical realist must be taken to have established a mechanism by which 
determinate reference (and thus the legitimacy of these notions in a description 
of the natural number structure) is assured.10

Nothing in the idea of a categorical, i.e., determinate, characterization of a 
notion demands that the logic in which it occurs be completely specified; such 

10. The history of the relationship between notions of completeness and categoricity is fasci-
nating and involved, see (Awodey and Reck 2002). In the present context, the crucial idea is that 
a loss of completeness does not amount to a loss of a determinate grasp, and thus the need for a 
semantic specification of a logic (which drove the argument of the model-theoretic sceptic) is not 
forced upon the mathematical realist. Rather, the claim to possess a determinate grasp of a notion 
can be maintained in the face of an incomplete specification as long as it can be established that 
this incomplete specification is categorical for the notion thus specified. The proposal, spelled out in 
more detail in the next section, is thus to replace a notion of completeness with a notion of catego-
ricity. It was precisely the misalignment of completeness and full, i.e., categorical, determination 
that motivated Carnap (1943) to propose an alternative form of axiomatization of the propositional 
calculus and of FOL. He assigned to what we termed Carnap-categoricity in (Bonnay and Speitel 
2021) an equally important status as was given to completeness, although tradition has not fol-
lowed him in this.
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completeness is not a necessary condition for its unique determination. Our 
understanding of a notion and the way it interacts with others might be partial 
and incomplete, but this might nevertheless suffice to uniquely determine it and 
thereby guarantee determinate reference. To meet the challenge of the sceptic 
that characterization has, of course, to be given in terms that are naturalistically 
acceptable and do not appeal to semantic notions with indeterminate reference. 
This is what we try to do in the next section.

3. Securing Arithmetical Determinacy

The question how we can determinately refer to the natural number structure 
has been “pushed upwards” and transformed into the question how we can 
determinately refer to the notions used in a categorical characterization of ℕ. 
The objection of the skeptic is the same as before: what warrants the exclusion 
of unintended interpretations of these notions? When it comes to the notion of 
infinity, doubts over its determinability stem from the fact that it is not first-order 
definable and its logic is not recursively axiomatizable. The point of contention 
thus concerns the question what it takes to “fully formalize” a notion such as the 
quantifier “there are infinitely many”: can determinate reference to this quanti-
fier be guaranteed without recourse to the notion of an 𝜔𝜔-sequence, the very 
notion we wish to determine in terms of it?

We will argue that the impossibility of recursively axiomatizing the logic 
of ℒ(Q0) need not constitute an obstacle for a determinate grasp of the notion 
of infinity. A determination of the meaning of an expression and a complete 
account of the truths involving it can come apart:11 It is perfectly possible 
to uniquely pin down the model-theoretic value of a notion without requir-
ing a prior determination of the full class of truths and consequences it gives 
rise to.12

11. Carnap showed the inverse of this claim long ago: he demonstrated that a complete 
account of the truths a notion gives rise to in the context of a logic is not a sufficient condition for 
its unique determination (Carnap 1943). Recently, building on work in (Bonnay and Westerståhl 
2016), these investigations were extended to languages richer than FOL and it was demonstrated 
that unique determination of the meaning of a quantifier by a set of inferences is, in general, insuf-
ficient for axiomatizing the resulting logic (Westerståhl and Speitel 2022). Hence, a full grasp of 
the truths of a logic is neither necessary nor sufficient for the unique determination of the notions 
giving rise to it.

12. Similar observations can be found in Field’s writings: “The incompleteness of formal 
arithmetic results from the incompleteness of the theory of … [the quantifier ‘there are finitely 
many’]; but if the latter is held determinate despite the undecidability of certain sentences in it, 
the same will hold derivatively of the concept of natural number” (Field 2001: 338). See also (Field 
1980: ch. 9), (Field 1994), (Field 2001: ch. 11 & 12). We will discuss his approach further in §4.1.



1092 • Sebastian G. W. Speitel

Ergo • vol. 11, no. 40 • 2024

3.1. Grasping (In)finitude

Our moderate mathematical realist has been engaging in arithmetical reasoning 
and practice her entire life; first pre-theoretically by counting discrete objects in 
day-to-day encounters and later much more systematically through her work in 
a mathematics department. She has now been challenged by the model-theoretic 
skeptic to justify how her claims can be said to be about the intended structure 
ℕ, how she can be certain that this was the object she has been talking about all 
along when doing arithmetic.

During her early studies of arithmetic, e.g. in the context of a high school 
mathematics class, she established that there is no largest prime number; that, for 
every prime number n, there is a prime number m that is larger. Asked how many 
primes there are she concluded that there must be infinitely many, for otherwise 
there would have to be a prime number n such that there is no larger. However, 
when trying to express the claim “There are infinitely many natural numbers 
that are prime” in the language of arithmetic she had been operating with, the 
language of PA, she finds that this simple-seeming claim can only be expressed 
in a very cumbersome and unintuitive manner. This state of affairs is rendered 
even more unsatisfactory by the apparent grammatical parallel between state-
ments of the form “There are n-many objects that have property P” and “There 
are infinitely many objects that have property P,” the former of which possesses 
a formalization in FOL that faithfully mirrors its surface grammar, whereas the 
latter does not.

This is a somewhat unhappy situation, if only because it would be very nice 
to have a shorthand for saying that there are infinitely many natural numbers n 
that possess a particular property P, this claim immediately entailing, for exam-
ple, that there can be no largest natural number m possessing P. It is furthermore 
a type of claim that our moderate mathematical realist encounters frequently in 
her arithmetical practice and uses regularly to communicate certain facts about 
collections of natural numbers without having to resort to cumbersome circum-
scriptions or paraphrases. To remedy this shortcoming she resolves to introduce 
an expression filling the linguistic gap discovered.

Note that she does not wish to talk about an object, infinity; she merely 
wishes to express that there are infinitely many natural numbers that possess a 
particular property, completely analogous to the claim that there are, say, 397 
natural numbers that have a property P.13 She thus does not set out to detail 
and investigate the properties of the object infinity, on par with the way she 
characterizes the object 71 (is the 20th prime number; is a permutable prime; is 
a twin prime, etc.), but, rather, treats the expression “there are infinitely many” 

13. See (Field 1980: 93) for a similar observation.
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as part of the framework used to talk about natural numbers and state proper-
ties of these, on par with the grammatically similar expression “there are at least 
n-many.”14 In other words, she treats the expression as a quantifier of the logi-
cal language used to talk about natural numbers, not as something denoting an 
object in the range of those quantifiers.

Being part of the logical superstructure for talking about natural numbers 
she can lay down rules for this quantifier. These state under what conditions 
we are warranted to infer that there are infinitely many natural numbers that 𝜑𝜑 
(e.g., when there is a natural number that 𝜑𝜑’s and for every natural number that 
𝜑𝜑’s there is a larger one that also 𝜑𝜑’s) and express what it means for there to be 
infinitely many natural numbers that 𝜑𝜑, i.e., what we may infer from the claim 
that there are infinitely many natural numbers that 𝜑𝜑 (e.g., that there is no largest 
natural number n that 𝜑𝜑’s).

Since the expression “there are infinitely many,” Q0, is regarded as belong-
ing to the logical superstructure for the language of arithmetic, and not as part 
of the arithmetical lexicon itself, the moderate realist, in a first attempt, settles on 
a characterization of the central inferences involving the expression Q0 that are 
free from arithmetic-specific vocabulary and assumptions, i.e., (i) and (ii) below:

(i)	 Δ𝜑𝜑 ⊧ Q0x𝜑𝜑(x)
(ii)	 Q0x𝜑𝜑(x) ⊧ 𝜓𝜓  for all 𝜓𝜓 ∈ Δ𝜑𝜑

where Δ𝜑𝜑 = {∃≥nx𝜑𝜑(x) | n ∈ ℕ} and ∃≥n is the FOL-definable quantifier “there 
exist at least n.”15

Note that the moderate realist has, so far, said nothing about the model-
theoretic meaning of Q0 and thus, by omission, avoided the challenge of the 
sceptic. However, for the proof of categoricity to go through she won’t be able to 
remain silent on this issue. Being pressed by the skeptic to explicitly state under 
what conditions a statement of the form Q0x𝜑𝜑(x) is true in a model  her reply 
that  ⊧ Q0x𝜑𝜑(x) iff  ⊧ 𝜓𝜓  for all 𝜓𝜓 ∈ Δ𝜑𝜑 is deemed insufficient and rejected on 
the basis of compositionality considerations. The sceptic demands that the truth 
conditions be stated explicitly in terms of (properties of) the extension of 𝜑𝜑(x) 
and the moderate realist obliges by providing the following truth-clause for Q0:

 ⊧ Q0x𝜑𝜑(x) iff 𝜔𝜔 ≤ |{a ∈M | ⊧ 𝜑𝜑(a)}|

14. That the latter possesses an object-language paraphrase reifying the notion “n-many” in 
PA, whereas the former does not, is inconsequential for her intention to introduce a linguistic 
device allowing her to directly express “infinitely-many” claims.

15. Note that the invocation of “ℕ” here does not amount to a presupposition of ℕ. It merely 
abbreviates that Δ𝜑𝜑 contains all statements of a particular shape that can be formed according to 
the grammar of FOL.
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Equivalently, she identifies the model-theoretic meaning of Q0 in a model 
 with domain M with 0(M) = {A ⊆M | 𝜔𝜔 ≤ |A|} and invokes the standard 
satisfaction clause for generalized quantifiers.

At this point, the challenge for the moderate realist re-emerges, for the skep-
tic now asks what it is that ensures her grasp of 0. How is it that she manages 
to refer determinately to it, rather than some deviant, unintended ∗ ≠ 0? Even 
worse, if the characterization of 0 requires determinate reference to 𝜔𝜔, as the 
satisfaction clause suggests, then the categoricity result of the moderate realist 
begs the question: determinate reference to an 𝜔𝜔-sequence has been secured by 
presupposing 𝜔𝜔.

Here, however, the moderate realist has a successful reply: it is the accep-
tance of the inferences (i) and (ii) that ensures determinate reference to 0, for 
0 is the unique value for Q0 rendering these inferences valid—there simply is 
no other, alternative value we could mean when reasoning in accordance with 
(i) and (ii). In other words, (i) and (ii) uniquely determine 0—no prior recourse 
to 𝜔𝜔 is needed to achieve determinate reference to 0 and the sceptical challenge 
thus fails to gain traction.

Let ℒ(Q) be the language of FOL with an added quantifier-symbol Q. Let ′ 
and ∗ be (type-appropriate) interpretations for Q.16 We say that 𝜑𝜑 is true in a 
model  under the -interpretation,  ⊧ 𝜑𝜑, if  ⊧ 𝜑𝜑 when Q is interpreted by 
. 𝜑𝜑 follows from Γ under the -interpretation, Γ ⊧ 𝜑𝜑, if, for all , whenever 
 ⊧ 𝛾𝛾  for all 𝛾𝛾 ∈ Γ, then  ⊧ 𝜑𝜑. Then:17

Theorem 1 Suppose that

(i’)	 Δ𝜑𝜑 ⊧′ Qx𝜑𝜑(x)
(ii’)	 Qx𝜑𝜑(x) ⊧′ 𝜓𝜓  for all 𝜓𝜓 ∈ Δ𝜑𝜑
(i*)	 Δ𝜑𝜑 ⊧∗ Qx𝜑𝜑(x)
(ii*)	 Qx𝜑𝜑(x) ⊧∗ 𝜓𝜓  for all 𝜓𝜓 ∈ Δ𝜑𝜑

Then ′ = ∗.

The theorem establishes that the two patterns of inference (i) and (ii) implicitly 
define Q. Any two quantifiers interpreting Q and obeying (i) and (ii) necessarily 

16. The following set-up can be found in (Speitel 2020) and (Speitel and Westerståhl 2022) 
where it is used to explore a more general phenomenon, an instance of which we consider above. 
It is based on (Bonnay and Westerståhl 2016).

17. This is a special case of a much broader phenomenon, termed Carnap-categoricity in 
(Bonnay and Speitel 2021), and more systematically investigated in (Speitel 2020) and (Speitel and 
Westerståhl 2022). In fact, any ECΔ-definable quantifier is uniquely determined in this way. The 
results mentioned here can also be found in (Speitel 2020) and (Speitel and Westerståhl 2022). Their 
proofs are reproduced in the Appendix. The Carnap-categoricity of the quantifier “there are infi-
nitely many” was first observed by Dag Westerståhl and is stated and generalized in (Speitel 2020).
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coincide—the inferences constrain the space of admissible interpretations so 
tightly, there is only a unique denotation that “fits.” Combining this with the 
fact that 0 is consistent with (i) and (ii) (see Theorem 2 in the Appendix), this 
result demonstrates that our hold of 0 is ensured by (i) and (ii). The inferential 
practice involving the quantifier “there are infinitely many” is sufficiently rich 
to ensure that our use of an expression for that quantifier does not admit any 
alternative, unintended interpretations. Determinate reference to 0 is thereby 
guaranteed. Determinate reference to ℕ can then be successfully achieved by 
means of the theory PA+ = PA + {∀x¬Q0y(y < x)}.

Note that the logic of ℒ(Q0), in its intended interpretation, is not recursively 
axiomatizable. However, inferring according to (i) and (ii) suffices to “fix” a 
determinate meaning for Q0. Thus, we can possess an implicit, yet full, understand-
ing of 0 so long as we infer in accordance with (i) and (ii), even in the absence of 
a complete and recursive axiomatization of the logic of the relevant notion, contra 
Button & Walsh’s contention (Button and Walsh 2018: 7.9).18 Recursive axiomatiz-
ability is thus not a good criterion for possessing a determinate grasp of a notion.19

The defense of a determinate grasp of 0 on the basis of the inferential patterns 
(i) and (ii) might, nonetheless, ring hollow to the naturalistically minded realist. 
The reason for this lies in the infinitary nature of (i) and the accompanying need 
for naturalistically unacceptable inferential powers required by its utilization.20 
Without providing a way of rendering (i) naturalistically digestible the realist 
must be taken to have transgressed the limits of moderation in the assumption 
of non-computational inferential capacities. Her defense of 0 is thus still incom-
plete. In the next section, we try to fill the argumentative gap that remains to 
defend the claim that 0 is, in fact, naturalistically acceptable.21

3.2. Naturalistically Acceptable Determinacy

Based on an idea of Feferman (2015), it was argued in (Bonnay and Speitel 2021) 
that the fact that 0 can be uniquely determined by a consequence relation 
including the inferences (i) and (ii) is sufficient to render it a logical notion. Here 
I do not wish to go as far, for what is at issue for the moderate realist is not the 
logical standing of 0, but the question as to its naturalistic acceptability on the 
basis of the inferential patterns (i) and (ii). Nonetheless, on the current approach 

18. For a similar observation see (Murzi and Topey 2021: 23). For the claim that the notions 
of incomplete logics escape our determinate grasp, see sources in (Murzi and Topey 2021: n.45).

19. I am grateful to an anonymous reviewer of this paper for emphasizing this point.
20. Cf. the Cognitive Constraint of (Warren and Waxman 2020: 485).
21. I am grateful to two anonymous reviewers of this paper to put pressure on this important 

point.
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the quantifier “there are infinitely many” is considered part of the logical 
superstructure used to formulate a (referentially determinate) theory of arith-
metic. Our grasp of the notions that form part of this superstructure is mediated 
through our inferential uses of them. The crucial question thus becomes: can the 
sort of inferential use required to fix the meaning of Q0 be made naturalistically 
acceptable in the contexts relevant for the moderate realist?

The central point of the above defense of using a stronger logic to categori-
cally characterize ℕ was that to possess a determinate grasp of the quantifier 
0 it is not necessary to have a prior grasp of, or access to, an 𝜔𝜔-sequence given 
independently of the use of Q0. Rather, accepting certain inferences governing 
the “intuitive,” pre-theoretical behaviour of 0 ensures that reference is thereby 
uniquely fixed. The referent thus determined must be the intended interpreta-
tion of Q0, because it is the only interpretation consistent with its inferential 
characterization. Note that the inferences laid down for the quantifier 0 are 
not grounded in properties of an independently assumed object, such as 𝜔𝜔, but 
rather concern the need for a logico-linguistic device to be able to state properties 
of certain progressions and collections of natural numbers.

However, even if the direct presupposition of 𝜔𝜔 could be avoided through 
recourse to inferential patterns (i) and (ii), this only shifts the challenge. To make 
the approach feasible for the moderate realist it must be established that (i) and 
(ii) constitute a naturalistically acceptable way of fixing the reference of Q0. And 
the infinitary nature of (i) raises serious doubts about this assumption.

For while the infinity of the set of inferences of type (ii) seems unproblem-
atic—in every particular case the actual inference is finite and thus, in principle, 
performable—this is not the case for inferences of type (i). Here it appears in 
principle impossible for cognitively finite agents like us to perform the inference 
as such performance would require one to go through infinitely many prem-
ises.22 To maintain that an inference must be performable without assuming 
non-computational deductive abilities amounts, in the current context, to a com-
pactness-demand: whatever can be inferred on the basis of a premise-set Γ should 
already be inferable on the basis of a finite premise-set Σ ⊆ Γ in order for the 
inference from Γ to its conclusion to be performable. Only such compact infer-
ences ought to count as feasible and are thus naturalistically acceptable.

Apart from arguing that performing infinitary inferences simply is possible 
under certain circumstances the moderate realist could at this stage point out 
that it need not be recognized, or even be recognizable, that a particular inference 
is being performed in order to reason according to it. Determinate reference, she 

22. For an argument that (some) infinite inferences are feasible see (Warren 2020; 2021). For 
arguments that non-compact inferences are neither artificial nor unusual, see (Griffiths and Paseau 
2022: ch. 5.3) and (Paseau and Griffiths 2021).
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might claim, is achieved by inferring in accordance with inferential patterns of the 
form (i), i.e., by not violating the pattern in one’s reasoning, rather than by actu-
ally performing the inference. However, such a defense is bound to leave the 
case for the determinacy of arithmetic on the basis of adopting ℒ(Q0) in a worse 
state than the moderate realist might hope. Moreover, a more robust strategy is 
available to her.

For she can point out that the relevant contexts for performing an inference 
of form (i) are, for her purposes, arithmetical contexts. In these contexts, she can 
legitimately avail herself of arithmetical vocabulary in stating inferential patterns 
involving Q0. In particular, she can replace the infinitary inference (i) by the, less 
general but finite, inference23

(iii)	 LO𝜑𝜑(x)(R) ⊧ Qx𝜑𝜑(x)

where LO𝜑𝜑(x)(R) is the sentence that says that R is a left-minimal, right-unbounded, 
strict linear order of the 𝜑𝜑’s.24 (i) and (iii) are equivalent over models with appro-
priate signatures (see Theorem 3 in the Appendix), and the assumption of (ii) 
+ (iii) thus also suffices to uniquely determine 0. Hence, in the context of the 
language of arithmetic the moderate realist is able to determine the intended 
meaning of Q0 in a naturalistically acceptable fashion.25

23. Note that the use of arithmetical vocabulary, and content-specific vocabulary in general, 
puts into doubt the status of 0 as a purely logical notion. This does not affect the point of the 
moderate mathematical realist however, for her goal is only to show how naturalistically accept-
able determinate reference to 0 is possible, not that it is possible by means of logic alone. The 
original proof of 0’s Carnap-categoricity by Dag Westerståhl made use of a different signature 
and characteristic inference-pattern but proceeded analogously otherwise.

24. The possibility of giving a compact presentation of this inference in the context of richer 
vocabularies is one of the essential differences between the approach to arithmetical determinacy 
in terms of ℒ(Q0) as pursued here, and the utilization of an 𝜔𝜔-rule to achieve a categorical char-
acterization of ℕ. A further advantage stems from the fact that proponents of ℒ(Q0) interpret a 
notion new to FOL, whereas the 𝜔𝜔-rule reinterprets a notion, the universal quantifier, already pres-
ent as well as assumed understood and determined by its usual rules. For this reason we think the 
approach in terms of ℒ(Q0) is preferable to the use of an 𝜔𝜔-rule in establishing the determinacy 
of arithmetic.

25. The result makes use of the fact that the semantics for generalized quantifiers adopted 
here are such that the extension of 0 over a model  is a function of its underlying domain, that, 
in other words, the interpretation of a quantifier only depends on the underlying set. This assump-
tion can be motivated in several ways: Assuming permutation- or isomorphism-invariance for 
quantifiers—on the basis of their relation to quantity/cardinality or, alternatively, considerations 
of logicality (see, e.g., (Tarski 1986), (Sher 1991))—suffices to force the interpretation of Q0 to be 
identical across identical domains. Even less demanding, assuming the standard interpretation of 
the usual logical constants of FOL entails the fixity of Q0’s interpretation across identical domains. 
Nevertheless, there is a genuine question regarding how legitimate it is for the moderate realist 
to appeal to and adopt any of these assumptions. I am grateful to an anonymous reviewer of this 
paper for raising this issue for the moderate realist.
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A further revenge objection looms large, for in the compact characterization 
of 0 via (ii) + (iii) extensive use was made of arithmetical concepts (e.g., linear 
orders). This, the model-theoretic sceptic complains, is illegitimate as it amounts 
to using notions and concepts in determinately fixing the meaning of Q0 whose 
very determinacy, ultimately, depends on 0. We can here fruitfully distinguish 
between the positions of the naïve and the refined sceptic. The naïve sceptic 
holds that the concepts used in achieving determinate reference to ℕ must be 
completely understood/understandable in all their consequences. This, I argued 
above, is unnecessary to possess a determinate grasp.

The refined sceptic, on the other hand, assumes that the notions we use to 
characterize the natural number structure must be fully determinate before we 
can use them towards this goal. This, I think, is equally mistaken. The determi-
nacy of a notion, and the determinacy of theories making use of that notion, can 
develop in tandem, mutually precisifying and fixing each other through their 
interaction. We might have to use a moderate amount of first-order describable 
arithmetic to state essential properties of the quantifier “there are finitely/infi-
nitely many” which we can then, in turn, use to characterize the (models of the) 
theory we applied to describe those properties. Each component by itself might 
inherit indeterminacy from the other. In conjunction, however, they mutually 
ensure determinate reference:26 “we needn’t first secure the determinacy of a 
concept before we use it in reasoning: if that were required, reasoning could 
never get started” (Field 2001: 342).

In using the theory of linear orders to describe the conditions under which 
we might infer a sentence involving Q0 we are leaving the particular kind of 
linear order we have in mind underdetermined. Despite this underdetermina-
tion, it suffices to fix the intended meaning of Q0 which we then use to specify 
the nature of the relevant linear order further. The objection thus, once again, 
relies on additional, unjustified assumptions regarding the process of fixing 
reference.

4. Alternative Proposals

Having argued for a response to the sceptical challenge on behalf of the moder-
ate mathematical realist in the previous section, I will now briefly consider two 
alternative proposals for securing determinate arithmetical reference: Field’s 
expansion of arithmetical practice (Field 1994; 2001), and Murzi & Topey’s (2021) 
defense of the categoricity of the second-order quantifiers.

26. See also (Field 1994: 396): “To say that we do not have a determinate understanding of 
something is not to say that we have no understanding of it at all.”
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4.1. Field: Inferential Practice and Mathematical Applications

The question of the model-theoretic skeptic is “[w]hat are the limits of the seman-
tic facts that our inferential practice might determine?” (Field 2001: 339). The 
answer provided, by invoking non-standard models, is that those limits fall short 
of determining all relevant facts concerning the notion of finitude. Field claims 
that this is due to—artificially and unnecessarily—restricting ourselves to the 
inferential practice of pure mathematics, thereby ruling out further resources we 
have at our disposal for fixing the content of concepts. Just as there are non-formal 
causal or phenomenal constraints that help us fix the reference of “planetary 
body” or “cat,” he maintains that we can avail ourselves of additional constraints 
on permitted models, thereby ruling out some unintended candidates.

In the case of mathematics Field advocates for broadening our conception of 
the inferential practice we take to contribute to fixing reference of mathematical 
expressions. Relevant additional constraints on permitted models could stem 
from physical applications of the mathematical apparatus.27 Given that observa-
tional or, more broadly, non-mathematical scientific vocabulary can be fixed by 
non-mathematical constraints, that unintended models for these notions can be 
ruled out on the basis of mechanisms that are not subject to a revenge-application 
of the “just-more-theory”-manoeuvre, we are thus supplied with additional 
means to restrict the extensions that mathematical vocabulary used in the 
formulation of theories may take on.

More concretely, the hope is that “if the physical world is as we typically think 
it is, our physical beliefs are enough to determine the extension of ‘finite’” (Field 
1994: 416). The precise nature of the physical assumptions Field considers for 
fixing the extension of “finitely many” is unimportant for present purposes.28 
The “key to the argument … is the assumption that the physical world pro-
vides an example of a physical 𝜔𝜔-sequence that can be determinately singled 
out” (Field 2001: 341). Since access to this 𝜔𝜔-sequence proceeds via physical 
vocabulary, which is not subject to the same referential indeterminacy affecting 
mathematical vocabulary, it constrains reference of our mathematical vocabu-
lary in a non-objectionable way: “the constraints on the physical vocabulary 
determine a privileged class of interpretations in which ‘finite’ determinately 
stands for what it should” (Field 1994: 417). Expanding the inferential practice 
to be taken into account in fixing the notion of “finite” to include applications of 
mathematics to physical theory thus yields an inferential practice rich enough to 
rule out non-standard interpretations of the quantifier “there are finitely many.”

27. See (Field 1994: 414–420) and (Field 2001: 340–342). See also (Weston 1976: 296–297) for a 
similar argument.

28. See (Field 1994: 416–420) and (Field 2001: 340–342). Cf. also (Parsons 2007: 289–290) and 
(Warren and Waxman 2020).
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Our approach has much in common with Field’s, including the idea that 
knowledge of concepts such as “(in)finitely many” is mediated through our 
inferential use of them. It nonetheless differs in an important respect: Field leaves 
the inferential practice of pure mathematics and incorporates inferential prac-
tices of the (applied) sciences that use mathematics. The approach of §3, while 
potentially having to move beyond purely logical practices,29 remains squarely 
within the inferential practice of mathematics itself, with no recourse to physical 
or observational notions of any kind.

This makes a difference: while Field’s approach requires a prior grasp of a 
particular and special physical object—an instantiated 𝜔𝜔-sequence on the basis 
of which we are able to obtain a determinate notion of “finite set” by means of 
which we can then appropriately state the semantics of the quantifier “there are 
finitely many”—the approach pursued above deems the existence of a (partial) 
characterization of the inferential behaviour of the quantifier “there are infinitely 
many” sufficient to determine its meaning.30

Thus, on Field’s account, to achieve determinacy of reference for arithmetical 
notions we have to accept several strong empirical assumptions concerning the 
infinitude of space or time.31 It is this dependence on empirical fact—Field’s cos-
mological assumption concerning the structure of the world (Field 2001: 340)—that 
has been most frequently criticized:

I find it hard to see how someone could accept that [cosmological] as-
sumption who does not already accept some hypothesis that rules out 
nonstandard models as unintended on mathematical grounds. If our 
powers of mathematical concept formation are not sufficient to do the 
latter, then why should our powers of physical concept formation do any 
better? (Parsons 2007: 290)

“[U]sing the physical world to explain mathematical determinacy” risks getting 
“the intuitive conceptual priority … backwards” (Warren and Waxman 2020: 
490), thereby leaving the determinacy of the notion “finitely many” in an 

29. On the account of logicality developed in (Bonnay and Speitel 2021) “there are infinitely 
many” qualifies as a logical notion. If one accepts the inferential patterns (i) and (ii) above as 
legitimate for determining meaning we do not even need to invoke inferential practices outside of 
logic itself, though see the possible objections discussed in Section 3.2.

30. Note the different mechanisms of fixing “(in)finitely many”: On the proposal of §3, it 
is inferential patterns involving the term Q0 that determine its meaning “directly.” On Field’s 
account, our broad inferential practice determines the notions “set” and “∈” well enough to allow 
us to define the quantifier “there are finitely many” (Field 2001: 339).

31. Field emphasizes that there are a variety of empirical hypotheses that would secure the 
standard meaning of “finitely many,” and that his “cosmological assumption” is just one possible 
candidate among many.
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unstable state.32 The account proposed in §3 offers an alternative to fixing the 
meaning of the expression “there are infinitely many” that introduces new infer-
ential patterns to take into account, but does not rely on a prior physical basis for 
its determinacy.33

4.2. Murzi & Topey: Categoricity by Convention

The by far most popular response to the non-categoricity of PA consists in a move 
to a second-order framework and to consider PA2 instead. Dedekind’s Categoricity 
Theorem then ensures the categoricity of arithmetic. However, just as popular as 
this line of response to the underdetermination of arithmetic are criticisms of 
approaches utilizing second-order quantification to guarantee determinacy (see 
(Weston 1976), (Field 2001), (Shapiro 2012), (Meadows 2013)). The main objection 
to the use of SOL in establishing the categoricity of PA2 relates to the assumption 
of a full semantics for second-order logic. For here the model-theoretic skeptic 
asks in virtue of what the proponent of SOL can claim to be using a full rather 
than a Henkin-semantics (see §2.3).

The success of the project of using SOL to achieve determinate reference to 
the natural number structure thus stands and falls with the ability to ensure that 
the semantics for the second-order quantifiers is full. And the crucial question 
here is: in virtue of what is it that the proponent of SOL can reasonably claim that 
her second-order quantifiers range over the full power-set of the domain, rather 
than an inferentially indistinguishable subset thereof.34

Murzi and Topey (2021) defend the claim that the proponent of SOL is 
indeed using a full, rather than a Henkin-semantics. Their core contention is that 
it is not the concrete rules and axioms of any particular formal theory that fix the 
meaning of the expressions occurring in them, but that it is the dispositions to infer 
underlying those rules which ground their determinate semantics.

32. Field himself remains somewhat dissatisfied: “it is not entirely attractive, but I know none 
that is better. … I am sure that some will feel that making the determinateness of the notion of 
finite depend on cosmology is unsatisfactory; perhaps, but I do not see how anything other than 
cosmology has a chance of making it determinate” (Field 1994: 416, 418).

33. Cf. also (Carrara et al. 2016) for an alternative response based on the possession of a primi-
tive notion of finiteness.

34. Field (1994: 396) points out that aspects of the inferential practice of SOL allow us to go 
beyond Henkin-semantics. Nonetheless, even a generalized conception of inferential practice that 
suffices to go beyond Henkin-semantics still falls short of establishing a full semantics. Since noth-
ing essential depends on this here, we will, for presentational purposes, not consider any of these 
non-full but richer candidates, and continue to phrase the main difference as a difference in choice 
between Henkin- and full semantics.



1102 • Sebastian G. W. Speitel

Ergo • vol. 11, no. 40 • 2024

On their account, the dispositions to infer in accordance with a particular set 
of rules are not exhausted by concrete rules for particular languages or language-
fragments. Rather, the particular rules are accepted because they are manifesta-
tions of these dispositions when considering a concrete language. The fact that 
rules are grounded in dispositions to infer means that we are “disposed to accept 
all instances of those rules irrespective of how we expand our language” (Murzi 
and Topey 2021: 3). This, in turn, means that it is best to understand rules not as 
particular collections of their instances with respect to a concrete vocabulary but, 
rather, as what Humberstone (2011) calls language-transcendent, i.e., as functions 
from languages to collections of instances over these languages, or, following 
McGee (1997; 2000; 2006), as open-ended, i.e., as continuing to hold unrestrictedly 
under expansions of the language. It is the open-endedness of rules, grounded 
in language-transcendent inferential dispositions, that fixes the full semantics of 
the second order quantifiers: “the open-endedness of our inferential dispositions 
… suffices to yield full second-order logic” (Murzi and Topey 2021: 1).

Dispositions to infer remain undisturbed by the language in which the con-
crete inferences take place. The robustness under expansions or switchings of 
the language constitutes the open-endedness of rules of inference manifest-
ing these dispositions. A rule is open-ended if it continues to hold, if it remains 
valid, under the addition of new vocabulary to the language. To account for 
the extreme generality of dispositions to infer the semantics of the expressions 
occurring (non-schematically) in the rules of inference must be able to guarantee 
the continued validity of these rules no matter the precise language in which 
they are instantiated. This affects, in particular, the rules for the second-order 
quantifiers. Assuming that every object in the domain of discourse of a model is 
in-principle nameable forces the range of the quantifiers to be maximal, thereby 
ensuring a full semantics.

Let us reconstruct the argument in a bit more detail: Because our disposi-
tions to infer are unrestricted, rules of inference must be open-ended – they must 
continue to apply irrespective of any particular language. Assuming that “no 
item is in principle unnameable in any language that expands our own, guar-
antees that the logical rules hold universally: for any item whatsoever, there 
exists an expansion of our language in which there’s a term naming that item, 
and the logical rules hold in all such expansions” (Murzi and Topey 2021: 19).35 
The open-endedness of the rules, combined with the in-principle nameability of 
every object in the domain, guarantees that the interpretations of the quantifiers 
(first- and second-order) must be permutation-invariant. Generalizing the result 

35. Note that skepticism about the feasibility of such languages, questions concerning how 
it would be possible to add terms to a language naming every object we like, etc., are misplaced 
at this point. All Murzi & Topey’s argument requires is that every such expansion constitutes a 
possible language (Murzi and Topey 2021: 19, 23).
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by (Bonnay and Westerståhl 2016) that permutation-invariance forces the first-
order quantifiers to take on their standard interpretation to the second-order 
case,36 Murzi & Topey then establish that the only semantics consistent with 
the open-ended understanding of the rules for the second-order quantifiers is a 
full semantics.37 Reasoning in accordance with our dispositions to infer thereby 
secures a full semantics for second-order logic and rules out Henkin-seman-
tics as viable alternative—the indeterminacy of second-order semantics is thus 
removed.38

4.3. Some Issues for the Second-Order Strategy

Murzi & Topey propose an attractive strategy to secure a full semantics for the 
second-order quantifiers and, thereby, determinate reference to the natural 
number structure. They provide a diagnosis of the indeterminacy of the second-
order quantifiers that is continuous with a phenomenon already found in the 
first-order case and propose a unified mechanism for fixing the semantics for the 
expressions of FOL and SOL.

Both their and our diagnosis of the mistake in the sceptic’s argument main-
tains that the sceptic fails to appropriately capture what is necessary to possess 
a determinate grasp of a notion (cf. (Murzi and Topey 2021: 26)). Similarly, they 
say that “speakers (and theorists) need not grasp the complex mathematical con-
cepts involved in the standard semantics for SOL in order for it to be guaranteed 
that SOL is correctly interpreted by that semantics” (Murzi and Topey 2021: 26). 

36. Murzi & Topey observe that the underdetermination of the second-order quantifiers is a 
special case of a much wider underdetermination phenomenon affecting also the first-order quan-
tifiers. That the first-order quantifiers admit of non-standard interpretations consistent with their 
usual rules of inference was first observed by Carnap (1943). Bonnay and Westerståhl (2016) later 
characterized the degree and shape of this underdetermination precisely and showed that it can 
be remedied by demanding that the interpretations of the universal and existential quantifiers of 
FOL be permutation-invariant.

37. I am skeptical about the claim that “this result remains available even independently of 
our inferentialist assumptions, on the alternative (widely accepted) assumption that permutation 
invariance is necessary for logicality” (Murzi and Topey 2021: n.49). This is due to the way permu-
tation-invariance is put to use in Murzi & Topey’s argument, i.e., as applying directly to second-
order objects (see (Murzi and Topey 2021: n.37)) rather than via permutations of the underlying 
first-order domain as in more orthodox approaches to logicality (see, e.g., Tarski (1986)). I will not 
pursue this issue further here.

38. The significant influence of constant-terms on possible interpretations of quantifiers 
has also been observed in the case of non-standard interpretations of the first-order quantifiers; 
see (Antonelli 2013: 638/639): “singular terms are unconstrained in their taking denotations […], 
thereby giving access to the ‘dark corners’ of the first-order domain where the light of the quanti-
fiers does not shine (i.e., less figuratively, allowing reference to objects that fall outside the range 
of the quantifiers).”
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It is sufficient to infer in accordance with the inferences characteristic of a notion, 
or to exhibit the right kinds of dispositions to infer, to ensure that the notion in 
question possesses its intended meaning.

Nonetheless, one might wonder how innocent the notion of open-endedness, 
which does much of the work in Murzi & Topey’s argument, really is. In 
particular, is the invocation of this notion tantamount to presupposing an under-
standing of full second-order quantification? If so, little is gained by its use in 
defending a full semantics for SOL. But even if not, there is the worry that it 
invites a “just more theory”-type revenge objection, in that by talking about pos-
sible extensions of a language we are (implicitly) quantifying over all possible 
languages, where this kind of quantification is as much in need of explanation 
as second-order quantification itself. I don’t believe this objection has as much 
force as some of its proponents have taken it to possess. The crucial idea, when 
it comes to open-endedness, is to reason in accordance with a rule come what 
may. This “come what may”-part, however, appears to place far fewer demands 
on our grasp of the notion of open-endedness than does quantification over all 
possible languages. What we need to know and understand is the general shape 
a language can take, but this falls short of requiring a grasp of the totality of all 
possible languages.39

There is, however, a further worry concerning the need for open-ended 
logical principles over and above open-ended mathematical principles. This line 
of criticism can be interpreted as questioning the need for a move to a second-
order framework, plagued by all the usual worries regarding its ontological 
commitments, logical status, etc., given that its advantages,—determinate 
mathematical reference,—can already be had in a first-order setting. The central 
insight here is that the first-order induction-schema, properly understood as 
open-ended, already suffices to achieve categoricity without requiring the addi-
tional use of second-order quantifiers. For, properly understood, the schema 
says that induction holds for all properties on the natural numbers. Its limita-
tions stem from the restrictive interpretation of “property” in the usual setting 
of first-order PA and an understanding of the schema as a meta-language abbre-
viation for an infinite set of object-language sentences. This, however, arguably 
misrepresents its intended scope and meaning. Thus, the unrestricted nature of 
induction might be better captured by directly using schematic variables in the 
object language.40 The use of such object-language schematic expressions, the 
argument goes, best expresses the generality and open-endedness of induction 

39. So it seems to me, at least. Though see (Field 2001: Postscript) for labelling this type of 
response a cheat and (Pedersen and Rossberg 2010) for the hidden ontological commitments of 
open-endedness. Cf. also (Walmsley 2002: 253).

40. See, e.g., (Feferman 1991: 2).



Securing Arithmetical Determinacy • 1105

Ergo • vol. 11, no. 40 • 2024

without incurring the ontological commitments that go along with explicitly 
quantifying over these variables.41

The schematic interpretation of the induction schema, as a way of expressing 
its unrestrictedness explicitly in the object-language itself, is sufficient to establish 
the categoricity of arithmetic in the free-variable fragment of second-order logic, i.e., 
SOL without second-order quantifiers but permitting the occurrence of second-
order variables.42 Not only is the assumption of second-order quantifiers ranging 
over the full powerset of the domain therefore not needed to achieve categoric-
ity, many of the (perceived) disadvantages of the use of full second-order logic 
in the characterization of the natural number structure can thus also seemingly 
be avoided: a proper implementation of open-endedness in the form of the sche-
matic interpretation of the induction schema yields categoricity “on the cheap.”

Leaving the ontological costs of schematic induction as against second-
order quantified induction undecided, one advantage that has been attributed 
to the free-variable fragment of second-order logic is that it steers clear of issues 
pertaining to the non-robust nature of the power-set operation that features so 
prominently in the full semantics of the second-order quantifiers. If, as has often 
been claimed, we are lacking a clear understanding of the notion “all subsets of” 
when it comes to infinite domains, i.e., of the power-set operation, this lack of 
clarity immediately affects our understanding of full second-order quantifica-
tion itself. Note that the open-endedness defense advanced by Murzi & Topey is 
of no help here, as we can grant that whatever interpretation our second-order 
quantifiers must have if our dispositions to infer are unrestricted must be full. 
Yet, since it is indeterminate what it means for an interpretation to be full, due to 
the non-robust nature of the set-theoretic operation used to spell out the notion 
of fullness, the fact that the appropriate semantics for the second-order quanti-
fiers must be a full semantics does little to remove the indeterminacy inherited 
through this “background indeterminacy” (see (Lavine 1994: 237/238)).

None of this seems to affect the understanding of the schematic version of 
induction:43

one can work with theories formulated in free-variable second-order lan-
guages, and one can coherently maintain the categoricity of arithmetic 
and analysis, without claiming some sort of absolute grasp on the range 

41. See (Shapiro 1991: 247/248) and (McGee 1997: 60). See (Pedersen and Rossberg 2010) for 
criticizing this move as an attempt to illegitimately hide ontological commitments.

42. See, e.g, (Shapiro 1991: 248) and (Corcoran 1980).
43. See also (Lavine 1994: 231): “we understand when a given expansion of a language is 

permissible. But that is a far cry from the commitment required for using second-order universal 
quantification—the commitment to a determinate but unexplained fact of the matter about what 
all the subcollections of a domain are.”
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of the relation and function variables—or even claiming that there is a 
fixed range. One only needs the ability to recognize subsets as they are 
defined, and in the context of the interpreted formal languages in ques-
tion this is not problematic. This is a rather weak hold on the range of the 
second-order variables. (Shapiro 1991: 247–248)

It is not difficult to see that the free-variable fragment of second-order logic 
is equivalent to only allowing initial universal quantifiers over second-order 
variables (see (Shapiro 1991: 246–250) and (Corcoran 1980)). For this reason it 
has been described as a mere notational variant of a fragment of SOL, affected 
by the same sorts of problems pertaining to the semantics, ontological com-
mitment, and indeterminacy of SOL.44 Whatever the precise relation between 
SOL and its free-variable fragment, however, their difference prompts some 
questions for the way Murzi & Topey wish to secure the determinacy of 
arithmetical reference.

The question is why we should want to invoke second-order quantifica-
tion at all. Given the success of the free-variable fragment, why not agree with 
the dispositional story concerning the open-endedness of genuine arithmetical 
claims (i.e., induction), but stop there? What need is there to invoke further logi-
cal notions when the open-endedness of the mathematical claims of the theory 
under consideration suffice to determinately fix reference? Why, in other words, 
assume more than is needed for the goal at hand? This point is not so much an 
indication of a shortcoming of the position, but a request for a justification of the 
additional logical machinery employed. It is a significant request, because the 
invocation of that machinery under its preferred interpretation brings with it an 
interesting further type of indeterminacy, seemingly absent in the free-variable 
fragment: the non-robustness of the power-set operation needed to spell out the 
intended semantics. Let me elaborate further on this point.

While the indeterminacy of the background theory of models, engendered by 
the possibility of non-standard models of set-theory, affects all model-theoretic 
responses to the skeptical challenge, the indeterminacy “cuts deeper” in the 
case of second-order logic. The existence of Löwenheim-Skolem models of the 
background set-theory affects the determinacy of the entire model-theoretic appa-
ratus that provides the space of meanings for the notions under consideration. 
But there are further types of indeterminacy affecting specifically second-order 
quantification. I will address the former type of indeterminacy first.

In any first-order framework Löwenheim-Skolem models are as unsatisfac-
tory as they are unavoidable. They create an inescapable level of indeterminacy 

44. See, e.g., (Button and Walsh 2018: 162–163) and (Field 2001: 355). See (Lavine 1994: 229–
240) for a defense.
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for any defensible realist position as conceived in the context of this paper.45 
Consider, for example, the second-order quantifiers. Provided they are under-
stood in terms of a set-theoretic semantics and we somehow make sure that a 
correct interpretation of them is a full semantics this still does not completely 
remove any possible indeterminacy. This is because what it means for an inter-
pretation to be full might differ between different models of the background 
set-theory used to spell out the notion of a full interpretation. The existence 
of non-standard models of first-order ZFC, however, is guaranteed by the 
Löwenheim-Skolem Theorems. As a consequence, the notions needed to spell out 
the content of “full interpretation” and, as a result, that notion itself, remain 
indeterminate.46 All Dedekind’s Categoricity Theorem is able to provide is thus 
an assurance that once we have fixed an interpretation of the background set-theory, 
and thereby settled the meaning of, for example, “all subsets,” all models of the 
target-theory will be isomorphic. Analogous considerations apply to the notion 
“infinitely many.”

Assuming the standard model of set-theory outright is certainly much less 
warranted than assuming the standard model of arithmetic. However, making 
some moderate assumptions about the shape of acceptable models of the back-
ground set-theory helps reduce the unconstrained indeterminacy caused by 
Löwenheim-Skolem type phenomena significantly. These assumptions amount 
to supposing that the models of set-theory we are dealing with are transitive 
models.47 Call these acceptable models of the background theory.48 What we remain 
ignorant about when dealing with an acceptable model concerns the true extent 
of the set-theoretic universe.

A notion that is insensitive to the extent of the set-theoretic universe, i.e., that 
is such that it does not change its meaning depending on the actual extent of the 
universe of sets, is an absolute notion (see, e.g., (Jech 2003: 163)). A non-absolute 
notion is one whose meaning depends on the extent of the underlying universe 
of sets in a particularly crucial way: it changes its meaning over fragments of 
the set-theoretic universe depending on how those fragments are expanded or 
restricted—its meaning is intrinsically unstable. Here we are specifically con-
cerned with notions absolute among acceptable models of ZFC.

45. The criticism that background indeterminacy remains is not new; see, for example, 
(Weston 1976), (Parsons 1990), (Field 2001: Postscript), (Button and Walsh 2018: 158) and (Button 
2022).

46. See, e.g., (Field 2001: Postscript), (Button and Walsh 2018: 158), and (Button 2022).
47. See, e.g., (Jech 2003: 163) for a precise definition. Roughly, this amounts to assuming that 

the membership relation of the model is the real membership relation and not some inaccurate 
representation of it.

48. Cf. (Field 1994: 416) for the recognition of the importance of transitive models of set-theory 
for the question of referential determinacy.
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While a property such as being finite is absolute (among transitive models 
of ZFC) (see, e.g., (Kunen 2011: 123)), several set-theoretic notions crucial to 
the full semantics of SOL, such as, e.g., the power-set operation, are not. SOL’s 
demands on the background universe of sets are thus much more substantial.49 
This has consequences for the set-theoretic robustness of second-order conse-
quence more generally.50 Note that the instability of non-absolute notions is a 
very different sort of indeterminacy than the one that arises due to the existence 
of non-standard models of the background set-theory which, in some sense, cuts 
deeper. The latter is a result of the inability to rule out deviant models of the 
background set-theory due to expressive limitations of first-order languages. 
The former shows that even if the notions “is a set” and “∈” are not thoroughly 
mis-interpreted, as long as their interpretation is left partial, indeterminacy can 
arise. Thus, even among acceptable models of the background set-theory non-
absolute notions are affected by indeterminacy.

The finite/infinite distinction turns out to be set-theoretically robust in this 
sense: the notion of finitude is absolute (among transitive models of ZFC). This 
means it is, to a certain degree, independent of the real, underdetermined set-
theoretic universe in that transitive models of set-theory will not disagree on 
which sets to count as finite. No matter what transitive model of set-theory 
we are operating in, then, i.e., no matter the actual extent of the set-theoretic 
universe, the notion “finitely many” will not admit multiple, divergent inter-
pretations in them. What is underdetermined is what is the actual extent of the 
universe of sets, but not the meaning of “finitely many” in it, whatever it may 
be. The intended semantics for second-order logic, on the other hand, is deeply 
affected by this additional, intermediary type of indeterminacy and it is unclear 
how to rule it out short of simply postulating a primitive understanding of what 
it means to be a full semantics.

This demonstrates that the indeterminacy of the notions of SOL is very dif-
ferent from the indeterminacy of the quantifier 0: In the case of the notions 
at issue in ℒ(Q0) indeterminacy enters through first-order weaknesses of the 
background theory. The crucial notions of SOL, however, are not only vulner-
able to an object-theory level indeterminacy which manifests itself through 
the possibility of Henkin-models,51 but, additionally, to an “intermediate” 
indeterminacy which stems from variability in the meaning of crucial notions, 
depending on the extent of the underlying set-theoretic universe. The meaning 

49. Central notions of SOL are non-absolute, and its Löwenheim-number is much higher than 
that of FOL, indicating that its involvement with the mathematical background theory is much 
more substantial. This can also be seen from the meta-theoretical entanglement of SOL with its 
background set-theory, see (Shapiro 1991) and (Florio and Incurvati 2019).

50. See (Väänänen 1985: 610) and (Väänänen 2021a).
51. See also (Field 1994: 414–420).
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of the second-order quantifiers ∀X and ∃X is thus inherently more unstable, and 
therefore more indeterminate, than that of the quantifier 0.

Within any particular model of the background set-theory a categoricity 
theorem ensures that the notions under consideration possess a unique 
interpretation. Here, the account of §3, as well as the alternatives considered 
above, succeed in fixing notions required for determinate reference to the natural 
numbers. Nonetheless, I believe the fact that second-order notions are affected 
by an additional type of indeterminacy provides substantial reason to prefer a 
first-order response to the skeptical challenge.

5. Concluding Remarks

The response to the sceptical challenge advanced in this paper adopted a richer 
logical framework, ℒ(Q0), that permitted a categorical characterization of ℕ. It 
was argued that this framework was naturalistically acceptable due to the fact 
that, in the context of an arithmetical language, it was possible to achieve deter-
minate reference to 0 in a manner that did not assume infinitary, non-computa-
tional powers of deduction. In the course of doing so the proposal advanced the 
claim that determinate reference to the notions used to formulate a theory does 
not require recursive axiomatizability.

ℒ(Q0) was to be preferred to the more popular approach of using SOL to 
achieve arithmetical determinacy because indeterminacy runs deeper in the case 
of SOL than it does in the case of ℒ(Q0). Assuming a fixed model of the back-
ground theory, the theory of ℒ(Q0) suffices to determine a unique value for Q0, 
whereas the theory of SOL still admits multiple semantics for ∀X and ∃X. Less 
demandingly, assuming a range of admissible models of the background theory 
of a certain kind does not undermine the determinacy of Q0, whereas the values 
of the second-order quantifiers might vary depending on the particular model 
from that class. This suggests that our grasp of 0 is tighter than our grasp of 
second-order notions.

The arguments considered here all tried to achieve determinate reference 
by means of categoricity theorems. Yet, there has been much discussion about 
the use (and misuse) to which categoricity results have been put in the philoso-
phy of mathematics and logic and several (rather sobering) conclusions about 
the consequences one may derive from the existence of such results have been 
drawn.52 A common complaint against the mathematical realist has been to point 
out that categoricity theorems of the kind treated above can at most achieve a 

52. See (Walmsley 2002), (Meadows 2013), (Button and Walsh 2018), (Maddy and Väänänen 
2022).
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form of relative determinacy, determinacy relative to an assumed interpretation 
of the background-theory. That theory, however, is just as indeterminate as the 
theory of arithmetic itself was, and its interpretation might be far from unique. 
Given that any indeterminacy in the background-theory translates back into an 
indeterminacy of the target-theory, then, it seems not much has been gained 
by means of a target-theory level categoricity theorem. One reaction to this has 
been the suggestion to reconceptualize the notion of categoricity with its reli-
ance on a model-theoretic apparatus and replace it with a notion of internal 
categoricity.53

The response pursued here was more moderate but, we hope, no less 
motivated.54 It rested on the idea that, in order for the challenge of the model-
theoretic sceptic to gain traction, he needed to assume at least as much model-
theory understood as was needed for convincing the mathematical realist of 
the existence of non-standard models. The charge of the sceptic was thus that 
the position of the moderate mathematical realist was self-undermining: given 
the resources available to her, she was, by her own standards, unable to secure 
determinate reference, which could be demonstrated using methods accepted 
by her.55 This much may thus be assumed when responding to the sceptic: 
however much set-theory is needed in order to achieve a coherent enough 
understanding of the notions used in challenging the position of the mathemat-
ical realist. And this much suffices, this paper has argued, to defuse the scepti-
cal challenge. What the moderate realist needed to demonstrate to respond to 
the sceptical challenge was that she had, by her own standards, tools available 
that sufficed to categorically characterize the natural number structure, that her 
position was not internally unstable.56

This she did by proposing a set of rules that, in the context of arithmeti-
cal theories, satisfied the same standards as other rules accepted by her and 
whose requirements did not go beyond anything not already granted. Further 
evidence that the acceptance of the rules and the meanings they determined 
did not go beyond anything not already granted to the moderate realist, that 
the demands of ℒ(Q0) on the set-theoretical background are no higher than 
the demands of FOL itself, is afforded by a recently suggested assessment of 
Sagi (2018).57

53. See (Parsons 1990; 2007), (Väänänen 2012; 2021b), (Väänänen and Wang 2015), (Button 
and Walsh 2016; 2018), and (Button 2022).

54. See (Field 2001: 357) for criticism and (Button 2022) for a development of internal realism.
55. Cf. (Field 1994: 413) and (Button and Walsh 2018: ch. 9).
56. I am grateful to an anonymous reviewer for asking me to clarify the nature of the chal-

lenge to the moderate realist.
57. See also (Kennedy and Väänänen 2021) for discussion of Sagi’s suggestion.
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Sagi proposes to measure the degree of mathematical involvement of a 
logic in terms of the Löwenheim-number of that logic. The Löwenheim-number of 
a logic, if it exists, is the lowest cardinal 𝜅𝜅 such that if a sentence of the logic 
has models it has models of cardinality at most 𝜅𝜅. It can be understood as 
determining the amount of mathematical structure required by the logic, as 
measuring the strength of the demands on the set-theoretic background, and 
thus as spelling out the degree of the theory’s mathematical involvement. By 
the downward Löwenheim-Skolem Theorem the Löwenheim-number of FOL 
is ℵ0. It is known that the Löwenheim-number of ℒ(Q𝛼𝛼) is ℵ𝛼𝛼  for any ordinal 
𝛼𝛼58 and thus, the Löwenheim-number of, in particular, ℒ(Q0) is ℵ0. Interpret-
ing the Löwenheim-numbers as measures of the demands placed on the back-
ground set-theory it follows that the use of ℒ(Q0) requires no more set-theory 
than the use of FOL.59

Within a realist position itself, however, appeal to a categoricity-theorem 
remains relative: it is categoricity with respect to an assumed background 
framework. The choice of formal framework to achieve the categoricity result, 
however, can minimize the dependency on the background and thus the 
remaining degree of indeterminacy. For the proponent of ℒ(Q0) that means, 
in particular, that as long as especially severe misconstructions of the basic 
notions of the background set-theory can be avoided, i.e., as long as models of 
set-theory are assumed to be transitive, she has to be taken to have successfully 
achieved determinate reference to ℕ. Here, I claimed that approaches in terms 
of ℒ(Q0) fared much better than those in terms of SOL.

What are the prospects for ruling out the remaining indeterminacy and 
ensuring determinate reference “all the way down"? I think the idea that we can 
assume the intended model of our background theory must be given up. Yet, as 
demonstrated above, we can do with something more minimal: we merely need 
to be certain that the model of the background theory has a particular shape, i.e., 
is transitive. How reasonable is this assumption? A possible response might go 
as follows: the radical non-standardness of models that deviantly interpret “set” 
and “∈” among finite sets is something that one might, as Field (1994; 2001) 
argued, expect to conflict with the application of the mathematical apparatus in 
practice, and that may therefore be excluded on other grounds. The assumption 
of the transitivity of the models of the background set-theory is therefore some-
thing akin to an idealization of our ability (whatever it may be) to recognize such 
comparatively basic models as non-standard “by inspection.”

58. See (Sagi 2018: 20) and (Väänänen 1985), (Magidor and Väänänen 2011).
59. Löwenheim-numbers, as usually defined, assess the mathematical demands with respect 

to individual sentences of the logic under consideration. However, the above-mentioned results 
transfer, in the present case, just as well to entire theories of the respective logics.
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6. Appendix

We work in the framework of Bonnay and Westerståhl (2016) and thus assume 
that our first-order language contains, in addition to predicate constants, also 
predicate variables of any adicity. Without this assumption attention would 
have to be restricted to definable sets (though the difference is minimized by 
the assumption that quantifiers, as logical operations, must be defined over all 
domains).

Let ℒ(Q) be the language of FOL with an added quantifier-symbol Q. Let 
′ and ∗ be (type-appropriate) interpretations for Q. We say that 𝜑𝜑 is true in 
a model  under the -interpretation,  ⊧ 𝜑𝜑, if  ⊧ 𝜑𝜑 when Q is interpreted 
by . 𝜑𝜑 follows from Γ under the -interpretation, Γ ⊧ 𝜑𝜑 if, for all , whenever 
 ⊧ 𝛾𝛾  for all 𝛾𝛾 ∈ Γ, then  ⊧ 𝜑𝜑. A quantifier ∗ is consistent with a consequence 
relation ⊧ if, for all Γ ∪ {𝜑𝜑} and models , whenever Γ ⊧ 𝜑𝜑 and  ⊧∗ Γ then 
 ⊧∗ 𝜑𝜑.60

Let 0(M) = {A ⊆M | 𝜔𝜔 ≤ |A|} and ΔP = {∃≥nxPx | n ∈ ℕ} (in general, 
Δ𝜑𝜑 = {∃≥nx𝜑𝜑(x) | n ∈ ℕ}).

Theorem 1 Suppose that

(i’)	 ΔP ⊧′ QxPx
(ii’)	 QxPx ⊧′ 𝜓𝜓  for all 𝜓𝜓 ∈ ΔP
(i*)	 ΔP ⊧∗ QxPx
(ii*)	 QxPx ⊧∗ 𝜓𝜓  for all 𝜓𝜓 ∈ ΔP

Then ′ = ∗.

Proof: Suppose (i’), (ii’), (i*) and (ii*) hold. Let  be a model.

“⊆”	� We will show that ′(M) ⊆ ∗(M). Let A ∈ ′(M) and set [[Px]] = A. 
Then  ⊧′ QxPx. Hence, by (ii’),  ⊧′ ΔP. Since no sentence in ΔP 
contains Q, it follows that  ⊧∗ ΔP and thus, by (i∗), that  ⊧∗ QxPx. 
Hence, [[Px]] = A ∈ ∗(M) as desired.

“⊇”	 Analogous.

Therefore, ′ = ∗. � □

60. The following results are special cases of results stated and proven in (Speitel 2020) and 
(Speitel and Westerståhl 2022). They are based on the presentation of the issue in (Bonnay and 
Westerståhl 2016). The unique determinability of 0 was first observed by Dag Westerståhl and is 
stated and generalized in (Speitel 2020). I am grateful to Gil Sagi for pointing out a mistake in the 
original proofs.
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Theorem 2 We have, in particular, the following

(i)	 ΔP ⊧0
QxPx

(ii)	 QxPx ⊧0
𝜓𝜓  for all 𝜓𝜓 ∈ ΔP

Proof: Let  be a model. Suppose that  ⊧ ΔP, i.e., that  ⊧ ∃≥nxPx for all n ∈ ℕ. 
Then [[Px]] ≥ 𝜔𝜔 and therefore [[Px]] ∈ 0(M). Hence,  ⊧0 QxPx.

Now suppose that  ⊧0 QxPx. That means that [[Px]] ∈ 0(M) and thus 
that [[Px]] ≥ 𝜔𝜔. Thus, in particular,  ⊧ ∃≥nxPx for all n ∈ ℕ.�  □

Corollary 1 Let  be a quantifier, such that

(i)	 ΔP ⊧ QxPx
(ii)	 QxPx ⊧ 𝜓𝜓  for all 𝜓𝜓 ∈ ΔP

Then  = 0.

We will now show how it is possible to replace inference (i) above with a com-
pact inference. Let R be a (new) binary relation symbol and let LO(R) say that 
R is a left-minimal, right-unbounded, strict linear order; i.e., let LO(R) be the 
conjunction of the following sentences:

(i)	 ∀x ¬xRx (irreflexivity)
(ii)	 ∀x∀y∀z(xRy ∧ yRz → xRz) (transitivity)
(iii)	 ∀x∀y(xRy ∨ yRx ∨ x = y) (connectedness)
(iv)	 ∃x∀y(x ≠ y → xRy) (left-minimality)
(v)	 ∀x∃y xRy (right-unboundedness)

Let 𝜑𝜑(x) be a formula of FOL with x free and not containing R, and let LO𝜑𝜑(x)(R) 
abbreviate that R is a left-minimal, right-unbounded, strict linear order of the  
𝜑𝜑’s; i.e., relativize (i)–(v) above to elements satisfying 𝜑𝜑(x).

Theorem 3 Let 𝜑𝜑(x) be a formula of FOL with x free and not containing R. T.f.a.e.:

(a)	 Δ𝜑𝜑 ⊧ Qx𝜑𝜑(x)
(b)	 LO𝜑𝜑(x)(R) ⊧ Qx𝜑𝜑(x)

Proof:

(a)	 ⇒ (b): Assume that (a) holds and let  be a model, s.t.  ⊧ LO𝜑𝜑(x)(R). 
Suppose there is an n, s.t.  ̸⊧ ∃≥nx𝜑𝜑(x). That means, |[[𝜑𝜑(x)]]| < n. 
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Since the 𝜑𝜑’s form a strict linear order but are finite, it follows that there 
must be a maximal element. But the order is right-unbounded—contra-
diction. Thus, there is no n, s.t.  ̸⊧ ∃≥nx𝜑𝜑(x), and therefore  ⊧ Δ𝜑𝜑. 
But then, by (a),  ⊧ Qx𝜑𝜑(x). Therefore, LO𝜑𝜑(x)(R) ⊧ Qx𝜑𝜑(x).

(b)	 ⇒ (a): Assume that (b) holds and let  be a model, s.t.  ⊧ Δ𝜑𝜑. Since 
Δ𝜑𝜑 is a set of sentences of FOL we know, by the Löwenheim-Skolem 
Theorem, that there exists a countable elementary submodel −, 
− ≼ , s.t. − ⊧ Δ𝜑𝜑. Since Q does not occur in any sentence of Δ𝜑𝜑 
we also have that − ⊧ Δ𝜑𝜑.

	 Since − ⊧ Δ𝜑𝜑, [[𝜑𝜑(x)]]−  is infinite. Since − is countable, so is 
[[𝜑𝜑(x)]]− . Enumerate the elements of [[𝜑𝜑(x)]]−  as a0, a1,…. We define a 
new relation  on these elements by setting ⟨ai, aj⟩ ∈  iff i < j. As can 
easily be checked,  is a left-minimal, right-unbounded, strict linear 
ordering of the 𝜑𝜑’s in −.

	 Since − ≼  we have that [[𝜑𝜑(x)]]− ⊆ [[𝜑𝜑(x)]]. Now, let 
 = [[𝜑𝜑(x)]]∖[[𝜑𝜑(x)]]−  and define + =  ∪ {⟨a0, d⟩, ⟨d, an⟩ | d ∈ ;
n > 0} and claim that + is a strict partial order of the 𝜑𝜑’s in  (see 
proof of claim 1 below).

	 By the Order Extension Principle there then exists a strict linear order 
∗ of the 𝜑𝜑’s in , s.t. + ⊆ ∗. We claim that ∗ is, in addition, left-
minimal and right-unbounded (see proof of claim 2 below).

	 Now let ∗ interpret R. Then, ⟨,∗
⟩ ⊧ LO𝜑𝜑(x)(R) and thus, by (b), 

⟨,∗
⟩ ⊧ Qx𝜑𝜑(x). Since R does not occur anywhere in Qx𝜑𝜑(x) it 

follows that  ⊧ Qx𝜑𝜑(x) as well.�  □

Proof of claim 1: + is a strict partial order of the 𝜑𝜑’s in .

(a)	 Irreflexivity: Let b ∈ [[𝜑𝜑(x)]]. Then either (i) b ∈ [[𝜑𝜑(x)]]−  or (ii) b ∈ . 
Note that d ≠ an for any d ∈  and n ∈ ℕ.

	 If (i) and ⟨b, b⟩ ∈ +, then already ⟨b, b⟩ ∈ . But  was irreflexive and 
thus ⟨b, b⟩ ∉ . Hence, ⟨b, b⟩ ∉ +.

	 If (ii), ⟨b, b⟩ ∉ + immediately follows, since + contains no tuples 
both components of which are members of .

	 Hence, + is irreflexive.

(b)	 Transitivity: Let a, b, c ∈ [[𝜑𝜑(x)]] and suppose that ⟨a, b⟩, ⟨b, c⟩ ∈ +. 
Note that, by (a), a ≠ b and b ≠ c.

(i)	 Case 1: a, b, c ∉ .
	 It follows that ⟨a, b⟩, ⟨b, c⟩ ∈ . Since  is transitive we have that 

⟨a, c⟩ ∈  as well, and thus that ⟨a, c⟩ ∈ +.
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(ii)	 Case 2: a ∈ ; b, c ∉ .
	 Since ⟨b, c⟩ ∈ + it follows that c = an for some n > 0. Hence, by 

the construction of +, ⟨a, c⟩ ∈ +.
(iii)	 Case 3: b ∈ ; a, c ∉ .
	 Since ⟨a, b⟩ ∈ + we have that a = a0. Since ⟨b, c⟩ ∈ + we have that 

c = an for some n > 0. Hence, ⟨a, c⟩ ∈  and thus also ⟨a, c⟩ ∈ +.
(iv)	 Case 4: c ∈ ; a, b ∉ .
	 Since ⟨b, c⟩ ∈ + we have that b = a0. Since there is no e, s.t. 

⟨e, a0⟩ ∈ +, but ⟨a, b⟩ ∈ + this case is impossible.
(v)	 Case 5: a, b ∈ ; c ∉ .
	 Impossible, since + contains no tuples both components of 

which are members of .
(vi)	 Case 6: a, c ∈ ; b ∉ .
	 In this case it must be the case that b = a0. But there is no e, s.t. 

⟨e, a0⟩ ∈ +. Hence, this case is impossible.
(vii)	 Case 7: b, c ∈ ; a ∉ .
	 Impossible, since + contains no tuples both components of 

which are members of .
(viii)	 Case 8: a, b, c ∈ .
	 Impossible, since + contains no tuples both components of 

which are members of .
	 Hence, + is transitive. It follows that + is a strict partial order.

Proof of claim 2: ∗ is left-minimal and right-unbounded.

(a)	 Left-minimality: Since + ⊆ ∗ we know that ⟨a0, b⟩ ∈ ∗ for all 
b ∈ [[𝜑𝜑(x)]], s.t. b ≠ a0. Thus, the left-minimality of ∗ immediately 
follows from the fact that ∗ is a strict linear order.

(b)	 Right-unboundedness: Take any b ∈ [[𝜑𝜑(x)]]. Then there exists an an, s.t. 
⟨b, an⟩ ∈ +. Since + ⊆ ∗ it follows that ⟨b, an⟩ ∈ ∗ as well, and thus 
that ∗ is right-unbounded.
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