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The geometry of the environment can affect numerous psychological, social, and 
ecological processes. But its roles in social learning and the dynamics of descriptive 
norms remain unclear. Here we use agent-based modeling to explore how environ-
ments with different geometric shapes can influence social learning to produce vari-
ations in the extent of universally shared descriptive norms. Our simulations show 
that an environment with an irregular layout facilitates the emergence of multiple 
descriptive norms in a population, whereas an environment with a regular grid plan 
constrains social learning to produce a behaviorally homogeneous population.

1. Introduction

All agents live, forage, and interact in environments with different geometric 
shapes and layouts, determined by different distributions of physical borders, 
paths, roads, buildings, walls, and barriers. Some living spaces have a circular 
shape, some a grid plan, and some are star-shaped or with an irregular layout. 
Some spaces have one center, while others are polycentric; some have well-
delineated, self-contained neighborhoods, others do not have distinct neighbor-
hoods. Some spaces are larger than others; and some have shorter, less curvy, or 
better-connected paths.

In philosophy (Rietveld & Brouwers 2017), psychology (Gibson 1979), ecol-
ogy (Dale & Fortin 2014), and urban planning (Batty 2008), geometrical features 
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of the environment have been shown to shape dwellers’ behavior at multiple 
spatial and temporal scales, which is consistent with the spatial determinism 
hypothesis that “people’s agency and subjectivity are shaped and determined 
by the spaces they are in” (Kukla 2021: 13).

Urban planners, architects, geographers, economists, and philosophers have 
often supported or assumed some version of spatial determinism. For example, 
Le Corbusier assumed that the regular grid with its straight paths and right 
angles is the ideal geometry for a well-functioning, modern, urban space, while 
the zigzagging curve is “ruinous, difficult and dangerous … a paralyzing thing” 
(1925/1987: 10). Similar assumptions that the grid is the ideal urban plan, as it 
would facilitate orderly settlement, more efficient transit, and even “represent 
an egalitarian system of land distribution, [have been] expressed in the context 
of modern democracies, principally the United States” (Kostof 2018: 59). Spatial 
determinism is also assumed in philosophical utopias, where a grid plan is sup-
posed to promote conformity to a desired moral and political order (Meyerson 
1961; Lynch 1981; Hall 1998; Baldacchino 2018).

Studying a broader range of urban plans than the grid, and leveraging diverse 
bodies of empirical data, proponents of space syntax have supported spatial deter-
minism by showing that geometric features of a city can predict dwellers’ pat-
terns of movement, the duration of their commutes, and the frequency of their 
encounters with random people (Hillier et al. 1986; Penn 2003). Similarly, study-
ing the size of cities, economic geographers have demonstrated that it can robustly 
predict outcomes such as population density, commuting dynamics, quality of 
public service delivery, transit accessibility, economic growth, and environmen-
tal footprint (Batty & Longley 1994; Bettencourt & West 2010; Harari 2020).

Despite increased theoretical and empirical attention to how geometric 
features of the environment can affect socially significant outcomes, an under-
explored question concerns the relationship between environmental layout 
and social learning. Specifically, we know little about possible roles of different 
environmental plans in conformity-biased social learning and the emergence of 
descriptive norms. Here, we use agent-based modeling to study how variation 
in the distribution of paths and barriers in an environment can constrain confor-
mity-biased social learning to produce a universally shared descriptive norm in 
a population.

We define social learning as “learning that is facilitated by observation of, or 
interaction with, another individual (or its products)” (Heyes 1994: 207; Kendal 
et al. 2018), and conformity as a species of social learning consisting in an exag-
gerated propensity to modify one’s behavior to align with the behavior of oth-
ers (Cialdini & Goldstein 2004). Conformity-biased social learning can lead to 
the emergence of descriptive norms, which are typical or normal behaviors that 
individuals follow when they expect enough other individuals to do the same 
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(Bicchieri 2006: 31–32). In particular, conformity can produce behaviorally 
homogeneous populations where only one, universally shared, descriptive norm 
emerges (Efferson et al. 2008).

Muldoon et al. (2014) studied the emergence of descriptive norms with an 
agent-based model of a standing ovation. Their model includes agents with a 
certain propensity to stand up (or stay seated), which can change over time based 
on their intrinsic preference for standing up, observation of other agents, and 
bias to conformity. But Muldoon et al.’s (2014) model does not consider possible 
variation in the geometric structure of the environment. Similarly, Weatherall 
& O’Connor (2021) and Fazelpour & Steel (2022), who used network modeling 
to respectively study how variation in the communication structure and in the 
demographic diversity of a population can limit the negative effects of confor-
mity on the ability to reach accurate beliefs, also neglect potential roles of the 
geometric layout of the environment on agents’ belief dynamics.

Thus, by clarifying the relationship between the geometry of an environ-
ment and conformity’s tendency to produce behaviorally homogeneous popu-
lations, our study complements and extends existing work on social learning 
and the emergence of descriptive norms. Specifically, after describing the setup 
of our simulations (§2), we explain how variation in the geometric layout of an 
environment (§3), its density (§4), and agents’ status quo bias (§5), can bear on 
conformity’s likelihood of producing behaviorally homogeneous groups. We 
conclude by discussing the significance of our findings for spatial determinism, 
the epistemology of conformity, and the emergence of descriptive norms (§6).

2. Modeling Setup

We used NetLogo 6.3 to develop four agent-based simulations of M agents (i.e., 
“the population”) over N time steps. In each simulation, we varied the layout 
of the environment by changing the distribution of paths and barriers; we fixed 
the number of time steps to 50, and the size of the population to 500 agents, who 
could move through the available paths, observe others’ behavior, and modify 
their own behavior based on social learning.

In the modeling setup of our simulations, the real-valued variable i
nP  repre-

sented the effective propensity of agent i at time step n to pick a number between 
0 and 1. We assumed that this number represented a type of behavior that the 
agents could display. For a concrete, suggestive example, imagine that the pos-
sible types of behaviors of our simulated agents are percentages of their income 
(whatever that is) that they want to donate to a charity.

Following Muldoon et al. (2014), we defined agents’ effective propensity 
to display a certain type of behavior as the convex combination of an intrinsic 
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preference to display a certain behavior independently of what others are doing, 
and a preference to conform to others’ behavior.

Specifically:

●	 iq  is a real-valued number between 0 and 1, and represents the intrinsic 
preference of agent i to display a certain behavior (i.e., to pick a number 
between 0 and 1). Agents’ intrinsic preference is sampled from a uniform 
distribution, and remains fixed over time.

●	 i
nS  is the set of all the agents that agent i sees at time n. It includes the 

agent i itself, together with all the other agents that fall in its vision cone. 
The latter is determined by agent i’s current location, and the distribution 
of paths and barriers in the environment. The angle of the vision cone is 
set up to 10°, and the radius is determined by either the distance of the 
agent to the nearest barrier ahead of it or 40 units, whichever is lower.

●	 σ i
n is a real valued number between 0 and 1, and represents the social 

sensitivity of agent i at time step n. It determines how much weight the 
preference to conform, or conformity bias (factor of σ i

n), versus the intrinsic 
preference (factor of σ1 – i

n) have on the agent’s behavior. σ i
n is determined 

by the number of agents that each agent can see: the greater the number 
of agents, whose behavior agent i can observe, the greater σ n

i  is.

Agents’ social sensitivity is defined as:

	 σ =
11 –i

n i
nS

� (1)

Equation (1) captures the idea that conformity is a function of the size of the set 
i
nS  (van Leeuwen & Haun 2014). If agent i does not observe any other agent at 

time step n, then σ i
n is 0.

At step 1 of the simulation, the agents’ effective propensity is equal to their 
intrinsic preference. At any later step, Equation (2) defines the update strategy 
for agents’ effective propensity. This update strategy has two components. The 
first component is the product of the agent’s social sensitivity with the average 
behavior exhibited by the other observable agents at a given time (i.e., the set i

nS ). 
The second component is the product of the agent’s intrinsic preference with the 
complement value of the agent’s social sensitivity. The resulting strategy corre-
sponds to a social learning rule with the form:
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Equation (2) says that at time step n agent i observes the behaviors displayed by 
all the agents in its vision cone. Agent i then considers the average (or normal) 
type of behavior among the agents it has just observed, and its social sensitivity 
determines the extent to which it is drawn to modify its behavior to conform to 
what seems normal. Agent i’s new effective propensity to display a certain type 
of behavior is thus determined by combining (adding) the normal behavior to 
which i is drawn, together with i’s intrinsic preference, weighted according to i’s 
social sensitivity.

To make this less abstract, imagine again that our agents’ behaviors consist 
in percentages they want to donate to a charity. At a given time, an agent sees 
four other agents displaying what they want to donate, and the average amount 
is 0.5 of their income (whatever it is). A group of four agents results in a social 
sensitivity value of 0.75. Further assume that the agent’s intrinsic preference is 
to donate 0.1 of its income. In that case, the agent’s new effective propensity will 
be to donate (0.75)(0.5) + (0.25)(0.1) = 0.4 of its income.

Besides having preferences, observing others, and modifying their prefer-
ences based on social observation, the agents in our simulations could also move 
in space, though they did not have a destination, and were not constrained to 
return to any specific location. At each time-step, after updating their effective 
propensity, agents move a step forward from wherever they were in the environ-
ment. Their direction of movement was restricted to one of four right angles (0°, 
90°, 180°, 270°), and they moved forward until they hit another agent or a barrier. 
After hitting an obstacle, agents randomly chose a new right-angle direction.

Given this modeling setup, we simulated agents’ behavior, varying the lay-
out and density of their environment, as well as their propensity to stick to the 
status quo. We wanted to better understand how these variations could produce 
behaviorally homogeneous populations.

3. Varying the Layout of the Environment

In our simulations, the environment consisted of black patches representing 
open areas such as paths or streets, and gray patches representing obstacles for 
movement and vision, such as buildings and walls. Topologically, all the envi-
ronments had an underlying torus shape, meaning that in terms of agent move-
ment and vision, the environment wraps horizontally as well as vertically.1 We 

1. An alternative to the torus is a bounded box environment, or a (horizontal or vertical) cyl-
inder. We choose not to employ these environments, as they can be seen as special cases of a torus 
with a fenced perimeter. Further, a torus environment does not presuppose the existence of a center 
and border area. No patch in the environment is special. The construction of a human environment 
as a torus was considered by NASA for the purposes of space settlement (Johnson & Holbrow 1977).
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studied four types of environments with different distributions of paths and bar-
riers (Figure 1).

Empty space: As a baseline, we considered an empty space without any 
barriers. Since there are no obstacles, agents have maximal visibility in an empty 
space environment.

Regular grid: The second environment we studied is a regular grid with 
paths width of 3 units and square blocks of size 10 units; geometrically, no path 
is more or less central than any other. In terms of agents’ visibility, there are two 
cases to consider. If an agent’s direction of movement is parallel to the path the 
agent is on, or the agent is in an intersection of paths, then the agent has maxi-
mal visibility, being able to observe all the agents ahead on the same path. If an 
agent’s direction is perpendicular to the path the agent is taking, then the agent’s 
visibility is restricted to at most 3 units (the width of the path), and so the vis-
ibility is much lower.

Grid with street hierarchy: This third environment is a modification of 
the regular grid, inspired by the notion of street hierarchy from urban plan-
ning (Marshall 2004). We designed it by adding further blocks to the second 
environment so that it includes two primary, perpendicular paths, and four 
quarters containing secondary paths. Each quarter has one entrance and exit 

Figure 1: The empty space (top left), the regular grid (top right), the grid with 
street hierarchy (bottom left) and an instance of the irregular plan (P(gray) = 0.25).
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point somewhere along the two main paths. In terms of agent visibility, on the 
main paths agents have maximal visibility when heading parallel to those paths; 
but visibility reduces inside each quarter.

Irregular plan: In this fourth environment, gray blocks are distributed 
randomly to form an irregular layout. At each run of the simulation, a unique 
instance of an irregular plan is created using a P(gray) parameter, representing 
the probability that a given patch on the environment will be a gray block. In the 
base model P(gray) is set to 0.25. The greater the value of P(gray) is, the lower the 
agent visibility will be in such environments.

3.1. Results

We simulated agents’ dynamics in each of the four environments 50 times, 
where 	each simulation terminated after 50 steps. The distribution of agents’ 
effective propensity stabilized after around 10 steps in all four environments we 
considered. At the end of each simulation, we recorded the effective propensities 
of the 500 agents in the simulation.

In Figure 2, for each of the four environments, we plot the distribution of the 
effective propensity of every agent in the 50 simulations of those environments—
thus, each histogram contains 25,000 data points. While the final distribution of 
effective propensities in all environments tends to be symmetric and unimodal 
peaking at 0.5, the different environments result in different distributions.

In the empty space, the effective propensity of all agents centers around 0.5, 
with no agents exhibiting other values. This corroborates the idea that confor-
mity-based learning in an environment without any visual blocks results in one 
universally shared descriptive norm, and behavioral homogeneity. In the regu-
lar grid, the effective propensity of a majority of agents centers around 0.5; but 
every value of effective propensity is represented by a small number of agents. 
These are the agents who are not facing a main path, but a wall. The grid with 
path hierarchy and four quadrants led to a distribution of effective propensi-
ties more spread out than that in the uniform grid, resulting in less behavioral 
homogeneity. Finally, in the irregular environment, we see the largest spread in 
effective propensity, and so the least behavioral homogeneity in the population, 
which is likely the result of multiple, random obstructions each agent faces in 
such an environment.

The standard deviation among the effective propensity of a group of agents can 
be used as a simple measure of the degree of behavioral homogeneity of that group: 
The greater the standard deviation, the more behavioral diversity the group exhib-
its. In Figure 3, we plot the standard deviations of every run of our simulations, 
arranged by environment type (each swarm of points contains 50 points). Like 



1560 • Michael Cohen & Matteo Colombo

Ergo • vol. 12, no. 59 • 2025

Figure 2, we see a clear ordering of the environments based on the standard devia-
tions of the effective propensities. Note that at the start of each simulation, the 
effective propensity is determined by the agents’ intrinsic propensity, which is uni-
formly distributed and therefore has a standard deviation of 1/√12 ≈ 0.288 (marked 
as a dashed line). None of the simulations remained at that level.

Overall, then, this first set of simulations show that the geometry of the four 
different environments that we examined affected conformity-based learning, 
with the more irregular layout limiting the emergence of a behaviorally homo-
geneous population.

4. Varying Population Density

Density is another potentially crucial factor for clarifying the relationship 
between environmental layout and conformity-based learning. Population den-
sity is measured as a ratio of the number of agents relative to the space they 
occupy—for instance, the number of people per square kilometer. It is natural 
to ask whether population density is correlated in some simple manner with the 
outcome of conformity-based learning.

Figure 2: Distribution of effective propensity among agents in the four environments.
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In our model, we can measure population density as the ratio of the number 
of agents to the number of walkable, black, patches (see Figure 1). The results 
from our first set of simulations are by themselves informative about density. 
The number of walkable patches in the empty space environment, the regu-
lar grid environment, and the path hierarchy environment, is 3721, 1957, and 
1685, respectively. The average number of walkable patches in the random envi-
ronment with P(gray) = 0.25 is 2790.75. Thus, the results presented in Figure 3 
already suggest that the standard deviation of the effective propensity in the 
population is not linearly correlated with density. The empty space is the least 
dense but exhibits the lowest standard deviation. The density of the irregular 
environment is between that of the empty space and the regular grid, but its 
standard deviation is not between the latter two.

To explore the role of density in conformity, in this second set of simulations, 
we kept the number of agents fixed to 500, and changed the number of avail-
able black patches, which determined various levels of population density in the 
regular grid and irregular environment.

Figure 3: Standard deviations of effective propensity after 50 steps (50 runs   for each environment).
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4.1 Results

Figure 4 shows the result of varying the block size in the regular grid on the 
standard deviation of the effective propensity (each swarm of points depicts 50 
simulations with a given block size). When the block size is set to a maximum of 
40 units, the environment consists of four intersecting paths and less walkable 
black patches than agents. In this environment, standard deviation drops. So, 
in an environment with a grid plan, extreme density boosts conformity-biased 
learning to rapidly produce homogeneous population behavior.

In Figure 5, we see the results of varying the probability of gray patches in 
the irregular environment. We took P(gray) = 0.45 as a maximum limit, because 
we noticed that with values above 0.5, the random environment divides the 
agents into “islands” of black patches and does not facilitate movement. The 
results in Figure 5 suggest that higher density leads to higher standard devia-
tion, and so lower homogeneity in the population. Therefore, our simulations 
suggest that density by itself is too crude as an indicator for when confor-
mity could result in behavioral homogeneous populations following only one 
descriptive norm.

Figure 4: The result of varying the block size in the uniform grid.
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5. Varying Agents’ Status Quo Bias

The idealized agents in our simulations have a very rudimentary psychology. 
They are insensitive to possible consequences of their behavior; they have no 
goals, memory, attention, and emotion; they display no other psychological bias 
than a conformity bias.

One odd consequence of these idealizations is that if an agent cannot observe 
any other agent at a certain point in time, then the agent’s effective propensity 
will immediately align with the agent’s initial intrinsic preference. For instance, 
suppose that agent 0 hits a wall in step 10 of the simulation. Since the agent is 
in front of a wall, it does not see any other agents. In other words, =10 {0}aS . This 
implies, by equation (1), that the agent’s social sensitivity at that step, 10

0σ , is 0. By 
equation (2), this implies that the agent’s effective propensity is going to be equal 
to the agent’s intrinsic preference.

This behavior is grossly unrealistic for at least two reasons. First, in practice, 
the moment I move from a situation where I see people to one in which I do not 
see people, I still remember that people are around me, and that I am poten-
tially being watched. Second, a common idea about human psychology—going 
back to at least David Hume, and well supported by empirical evidence—is that 
humans, and living agents too, are governed by forms of psychological iner-
tia, preferring to engage in habitual status quo behavior unless motivated to do 
otherwise (Samuelson & Zeckhauser 1988).

Figure 5:  The result of varying the probability of gray blocks in the irregular environment.
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As a simple way to accommodate these considerations in our model, we 
added a learning rate parameter α (ranging between 0 and 1) to the update rule 
in equation (2), resulting in a social learning rule captured by this equation:

	 ( )α σ σ α
−∈

−

  
  = + − + −
  

  

∑ ( 1)
11 · (1 )

i
n

j
nj Si i i i i

n n n ni
n

P
P q P

S
� (3)

For simplicity, we assumed that the learning rate α was constant across all agents 
and all timesteps. When α = 1, equation (3) is equivalent to equation (2), and 
when α = 0, none of the agents change their effective propensity. When α = 0.1, 
agents do change their behavior, but are strongly biased toward the status quo. 
Equation (3) hence offers a straightforward way to include a status quo bias in 
our agents’ psychology.

5.1 Results

We simulated the grid environments and the irregular environment (with  
P(gray) = 0.25) with a learning rate of 0.1. We ran 50 simulations for each of 
the two environments, running each simulation for 100 steps. Even with a low 
learning rate, we observed that all models stabilized well before 100 steps of 
any simulation. The resulting effective propensity distributions are depicted in 
Figures 6 and 7. Consistent with our two previous sets of simulations, an irregu-
lar environment facilitates the emergence of a behaviorally diverse population, 
while the grid leads to a homogeneous population.

Figure 6:  different learning rates in the regular grid environment.
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Both figures show that a low learning rate (or strong status quo bias) elimi-
nates effective propensities outliers. In a regular grid environment, with the 0.1 
learning rate distribution, almost all agents fall between 0.2 and 0.8 effective 
propensity; while in the 1 learning rate distribution, we see agents of all types of 
the effective propensity spectrum, though the vast majority still display the same 
type of normal behavior. The extreme values of Figure 7 show a broadly similar 
pattern. So, the joint effect of a status quo bias and conformity can counteract the 
preservation and spread of extreme preferences in a population in the long run.

6. Discussion

Our modeling setup includes many idealizations. But our simulations demon-
strate that the geometric layout of the environment can strongly channel social 
learning, affecting the emergence and extent of universally shared descriptive 
norms in a behaviorally homogenous population. This constraint depends on 
whether one can repeatedly observe other individuals displaying a certain 
behavior, which is in turn constrained by the distribution of barriers and paths 
in the learning environment. Overall, then, the results of our simulation are con-
sistent with the spatial determinism hypothesis that “people’s agency and subjec-
tivity are shaped and determined by the spaces they are in” (Kukla 2021: 13). 
More specifically, our simulations show that conformity-biased social learning 
taking place in environments with a regular grid plan is likely to produce 
homogenous populations, where everybody follows the same descriptive norm; 
instead, learning environments with an irregular plan promote more behavioral 

Figure 7:  different learning rates in the irregular environment.
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diversity. This result is robust to variation in the density of the environment, and 
the psychology of our model agents.

Our study complements existing modeling work on epistemic dynam-
ics, where conformity-biased social learning has been studied in the context 
of communication networks (Weatherall & O’Connor 2021), and cognitive and 
demographic diversity (Fazelpour & Steel 2022). In this modeling approach, 
information exchange between agents occurs in simulated communication 
networks with different topological structures (Zollman 2013). Our study com-
plements this approach, as information exchange in our simulations occurs in 
environments with different plans, where agents can move through paths, bump 
into barriers, and observe others.

Weatherall & O’Connor (2021) found that conformity has a negative influ-
ence on the epistemic performance of a group. Fazelpour & Steel (2022) qualify 
this result by showing that demographic diversity in a group can counteract 
epistemically negative influences of conformity. Our own results do not directly 
address questions about group epistemic dynamics; but they can add nuance to 
such questions, by highlighting that the pattern of barriers and paths in an envi-
ronment can constrain conformity-biased social learning to produce multiple 
descriptive norms associated with behavioral diversity in a group. To the extent 
that conformity does not always produce a behaviorally homogeneous group, 
conformity need not always have negative epistemic consequences. In any case, 
it would be interesting to incorporate insights from urban planning and archi-
tecture in models of epistemic dynamics such as Fazelpour & Steel’s (2022) and 
Weatherall & O’Connor’s (2021).

Finally, while in fundamental agreement on how a descriptive norm can 
emerge in a population, our results extend Muldoon et al.’s (2014) modeling 
framework, not only by focusing attention on the role of geometry on social 
learning, but also by considering non-binary, non-discrete choice behavior. Mul-
doon and collaborators offer the case of standing ovation as a helpful stand-in 
for many descriptive norms, including everyday descriptive norms of fashion, 
etiquette, music taste, and personal space. But these latter descriptive norms do 
not involve binary choice options like the case of standing ovation, where one 
can either stand up or stay seated.

Consider, for instance, one of Muldoon et al.’s examples of an everyday norm 
of fashion like wearing a skirt of a certain length (2014: 4). This example concerns 
a non-binary, continuous choice variable, like the length of a piece of clothing, 
which may be better captured in our modeling setup, where agents’ effective 
propensity is about behavioral options representable on the unit interval. Above 
we alluded to another example, which might be more adequately captured by 
our modeling setup, namely: the decision to donate a proportion of one’s income.
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So, our study contributes another simple, though highly idealized, framework 
for investigating the emergence of many everyday descriptive norms with no 
inherent desirability, based on the dynamics of a population of agents with 
preferences and basic capacities for conformity-biased social learning, social 
observation, and movement in an environment with a specific pattern of paths 
and barriers.
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