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  Prescription Stimulant-Induced Neurotoxicity : 
  Mechanisms, outcomes, and relevance 

to ADHD  
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 Attention-defi cit/hyperactivity disorder (ADHD) is a relatively prevalent neuropsychiatric 
and neurodevelopmental condition characterized in the  Diagnostic and Statistical Manual of 
Mental Disorders, Fifth Edition  ( DSM-5 ) as diffi  culty sustaining attention and maintaining 
tasks at hand, heightened distractibility, and other defi cits in executive functioning. 
Prescription stimulants—amphetamine (AMP) and methylphenidate (MPH)—are 
the fi rst-line treatment(s) for ADHD in both pediatric and adult populations and exist 
in many formulations. Troublingly, the non-medical use (NMU) of amphetamine and 
methylphenidate is more prevalent in the American population, especially on college 
and university campuses, than the condition of interest. Th e neurotoxicological profi le 
and NMU epidemiology of prescription stimulants is of direct relevance to primary care 
physicians and psychiatrists as they are the providers most frequently tasked with the 
treatment of ADHD and the surveillance of substance misuse behaviors in the young 
adult population. As comprehensive literature reviews of the mechanisms and potential 
adverse sequelae of prescription stimulant-induced neurotoxicity intended for medical 
clinicians have been quite sparse in the last decade—especially given the gravity of the 
issue—this article includes a brief primer on ADHD etiology and pathophysiology; 
considers the current state of NMU epidemiology; reviews the mechanisms of action of 
AMP and MPH; and, fi nally, summarizes known molecular and clinical manifestations of 
AMP and MPH neurotoxicity. 
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Introduction

The clinical utility of prescription stimulants for the treatment of attention-deficit/hyperactiv-
ity disorder (ADHD) is well characterized and robust.1 ADHD is a persistent and pervasive 
neurodevelopmental disorder with an etiology influenced by the interplay of  environmental 
and genetic factors.2 The cardinal symptoms of ADHD—hyperactivity, impulsivity, and/or 
 inattention—are usually noticed by parents, teachers, and/or other caregivers in mid- to late 
childhood. Symptoms may cause noticeable impairments in social interaction and limit effec-
tive communication, social cooperation, and academic success.3,4 Early diagnosis by qualified 
mental health professionals (eg, psychotherapists, psychiatrists, behavioral neurologists) is asso-
ciated with greater long-term symptom management.5 Interestingly, up to 85% of patients diag-
nosed with ADHD early in life continue to have symptoms into adulthood, meaning long-term 
treatment consideration is likely necessary.6–9 Amphetamine (AMP) salts and methylphenidate 
(MPH), both prescription stimulants with many formulations (Table  1), have been recom-
mended as first-line treatments for ADHD in both pediatric and adult populations in the 

Table 1. FDA-Approved Formulations for the Treatment of ADHD

Trade name Dosage Maximum
recommended

Methylphenidate
Focalin XR 5–40 mg capsules 1 mg/kg or 30 mg/day
Concerta 18–54 mg tablets 2 mg/kg or 72 mg/day
Ritalin LA 10–40 mg capsules 2 mg/kg or 60 mg/day
Metadate CD 10–60 mg capsules 2 mg/kg or 60 mg/day
Daytrana 10–30 mg patches 30 mg/day
Ritalin SR 20 mg tablets 2 mg/kg or 60 mg/day
Methylin ER 10–20 mg tablets 2 mg/kg or 60 mg/day
Quillivant 25 mg/5 mL suspension 60 mg QAM
Focalin 2.5–10 mg tablets 2 mg/kg or 60 mg/day
Ritalin 5–20 mg tablets 2 mg/kg or 60 mg/day
Methylin 5–20 mg tablets or

5–10 mg/5 mL solution
2 mg/kg or 60 mg/day

Amphetamine
Vyvanse 10–70 mg capsules 1 mg/kg or 70 mg/day
Adderall XR 5–30 mg capsules 1 mg/kg or 30 mg/day
Dexedrine 5–15 mg capsules 1 mg/kg or 30 mg/day
Adderall 5, 7.5, 10, 12.5, 15, 20, 30 mg tablets 1 mg/kg or 30 mg/day
Dextroamphetamine 5–10 mg tablets 1 mg/kg or 30 mg/day
ProCentra 5 mg/5 mL solution 1 mg/kg or 30 mg/day
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United States for decades, although adjunctive behavioral therapy may produce even better 
outcomes in adults.1,5–7,10–14

Although the employment of stimulants in the treatment of nosologic predecessors to 
ADHD has been commonplace since the mid-20th century,8,15 adequate comprehensive con-
sideration of the potential neurological sequelae of long-term stimulant use, prescribed or oth-
erwise, is noticeably lacking in the literature. Alarmingly, the Schedule II status of stimulant 
medications indicates their abuse and dependency potential is similar to the medications impli-
cated in the current opioid epidemic. These factors should be of great importance to the inter-
ested clinical, toxicological, and epidemiological communities given the popular ease of access 
to, high prevalence of, and largely unknown long-term neurological sequelae of prescription 
stimulant use and misuse that I consider in this article. Importantly, the prevalence of ADHD 
is estimated to be between 5% and 10% in American children and 2.8% and 5.2% in adults, yet 
the prevalence of non-medical use (NMU) of stimulants is estimated to exceed that of the very 
condition(s) for which they are indicated.10,11,16–20 If prescription stimulants are more prevalent 
among the population than the condition(s) they are prescribed for, clinicians and epidemiolo-
gists should know what to look for when future patients without documented ADHD present 
with symptoms of dopaminergic and noradrenergic pathology. The same is true for those with a 
history of ADHD treatment, although historical stimulant use would hopefully be documented. 
Similar to medications approved for any variety of condition, NMU of stimulants indicated for 
ADHD is associated with a variety of adverse effects, and the potential for serious harm in 

Table 2. DSM-5 Diagnostic Criteria for ADHD by Presentation

Presentation DSM-5 diagnostic criteria
(≥ 5 of the following for at least 6 months in adults)

Predominantly
inattentive

•  Frequent failure to pay attention to detail in work, academic, or social 
settings

• Difficulty sustaining attention in tasks or play activities
• Frequently fails to listen when spoken to directly
• Difficulty managing and organizing tasks and activities
• Tends to avoid tasks requiring sustained mental effort
• Frequently loses materials necessary for daily tasks
• Easily distracted by extraneous stimuli
• Often forgetful of daily activities

Combined •  Shows characteristics of inattentive and hyperactive/impulsive 
presentations

Predominantly
hyperactive/
impulsive

• Frequent fidgeting, tapping, or squirming
• Often leaves task at hand when attention is expected
• Often restless
• Struggles to play or engage in restful activities
•  Seems to be constantly moving or unable to sit still for extended periods 

of time
• Talks more than expected
• Tends to blurt out answers before question is finished
• Often interrupts others
• Has trouble waiting in line
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the long term remains poorly characterized.21 This article includes a brief primer on ADHD 
etiology and pathophysiology; considers the current state of NMU epidemiology; reviews the 
mechanisms of action of AMP and MPH; and, finally, summarizes known molecular and clin-
ical manifestations of AMP and MPH neurotoxicity.

Primer on ADHD Etiology and Pathophysiology

ADHD (previously called attention-deficit disorder) is characterized by pervasive cognitive, 
behavioral, and emotional dysfunction.4,22 There are three clinical presentations of ADHD classi-
fied in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5; Table 2), 
with the combined presentation being the most prevalent (62%).23 Although roughly 75% of 
the risk for ADHD is attributed to genetics, large genome-wide association studies have been 
mostly unsuccessful in convincingly detecting DNA polymorphisms specifically associated with 
ADHD.2,20,24 Thankfully, this may be changing as recent work has found variants on FOXP2, 
SORCS3, and DUSP6, among other genes, to be associated with a 1.077 to 1.198 increased odds 
of ADHD development.25 Variants of genes involved in dopamine transmission, DRD4, DRD5, 
COMT, and DAT1, among others, have been shown to be associated with ADHD, providing 
evidence for the catecholamine dysregulation hypothesis of ADHD.2,24,26–31 Norepinephrine 
(NE) signaling is believed to be attenuated alongside dopamine (DA) in ADHD, which is likely 
the reason the NE reuptake inhibitor atomoxetine alleviates ADHD symptoms in some with 
the condition.27,32–34 Inhibition of neurotransmitter transporters, a mechanism of action of both 
AMP and MPH, prevents presynaptic reuptake of DA and NE molecules, thus allowing post-
synaptic receptors greater access to their respective ligands.35–37 The greater effectiveness of AMP 
and MPH compared to atomoxetine in individuals with ADHD is likely due to the frequent 
functional and anatomical changes seen in dopamine transport (DAT) in dopaminergic regions 
such as the frontal cortex, striatum, and basal ganglia compared to noradrenergic regions.1,38–42 
Serotonergic, acetylcholinergic, opioid, and glutamatergic signaling pathways are implicated in 
the pathophysiology of ADHD, as well, but current pharmacotherapeutic options target mainly 
NE and DA.43,44 As the etiology of ADHD is not unitary, it is likely that causal pathways will 
be interactive and dynamic; genetic, structural, functional, environmental, and social factors each 
appear to contribute to ADHD pathophysiology.45 Importantly, though the mechanisms of action 
of stimulants are identical in those with and without ADHD, their known outcomes are not.18,42,46

Methods

PubMed was used to search the literature for English-language articles published between 
2005 and April 2020. The cutoff year of 2005 was selected as the novel Adult ADHD Self-
Report Scale, version 1.1, the first adequate instrument used in the assessment of adult ADHD 
symptomatology, entered use in the World Health Organization’s World Mental Health Survey 
Initiative that year.47 Search terms including ADHD, attention deficit hyperactivity disorder, 
amphetamine, and methylphenidate were used alone and in combination with toxicity, epidemi-
ology, adverse effects, etiology, pharmacology, and/or misuse. The additional filters of journal arti-
cle and review were used to identify peer-reviewed articles addressing amphetamine and/or 
methylphenidate toxicology, misuse, and pharmacology, as well as ADHD treatment, etiology, 
pathophysiology, and epidemiology. The reference lists of retrieved articles were regularly hand-
searched for other relevant reviews, trials, or original research to identify additional records for 
use. Titles, abstracts, and full texts that resulted from keyword searches were reviewed briefly to 
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determine topical relevance, and the journal an article was published in was checked for quality 
using InCites Journal Citation Reports and/or Google Scholar Metrics. Individual articles were 
rated for quality using the McMaster University Effective Public Health Practice Project tool 
when deemed appropriate.48 To reduce the number of publications to review, the most up-to-
date review papers were used whenever possible. Publications were selected according to profes-
sional judgment of quality, relevance to MPH/AMP toxicology or pharmacology, and whether 
findings had clinical relevance. Older publications, such as a 1981 report on MPH hallucinosis, 
were included when necessary.49

Exclusion of an article occurred if (1) it pertained to ADHD comorbid with a diagnosed psy-
chiatric or developmental disorder (eg, autism spectrum disorder, obsessive-compulsive disorder, 
mood disorder), (2) concerned the effectiveness of ADHD interventions used outside mainstream 
medicine (eg, fish oil, ginger), (3) pertained to toxicity profiles beside neurological, (4) focused 
on psychosocial management of ADHD, or (5) concerned ADHD secondary to some other 
medical condition. The PRISMA flow diagram for this review’s selection procedure is presented 
in  Figure 1.50 After applying inclusion and exclusion criteria and hand-searching reference lists 
from important articles in the literature, a total of 488 articles were considered for review. Of the 
5006 articles initially yielded during the search, 114 were used in authoring this article. 

All publications matching search terms (page 2)
(N = 5734)

English language
(n = 5384)

Journal article/review
(n = 5006)

Abstract & full text available
(n = 3310)

Published after 2005
(n = 3530)

Records considered for inclusion
(n = 488)

Records included in the review narrative
(n = 114)

Excluded* (n = 2822)

Figure 1. Flow Diagram of Records Identified, Screened, and Included.

*Excluded due to topical irrelevance, low publication quality, or publication type
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Non-Medical Use Epidemiology

Recognition by the psychiatric and behavioral medicine communities that ADHD persists 
into adulthood in at least a large proportion of cases has increased subsequent availability of 
stimulant medications in the adult population.51 Given the strong motivation by young adults 
(aged 18 to 25 years)—many of whom are in college—to perform well academically, the pos-
itive effects on cognitive functioning in those who use stimulants for ADHD are plausibly 
expected to produce similar effects in anyone who uses them. As stimulant medications are 
known to boost working memory, processing speed, sociability, attention, etc in patients with 
ADHD, the average individual engaging in NMU simply (and erroneously) expects those clin-
ical benefits to translate into improved test scores, more hours spent studying, and cognitive 
stamina.26

Misuse of stimulants, defined as the NMU of prescription medications used to treat ADHD 
and other conditions, is especially prevalent on American college campuses.52 American young 
adults misuse prescription stimulants significantly more frequently each year compared to the 
general adult population.19,53–55 Prescription stimulants are reported to be easily accessible on 
college campuses, and, as neural networks underlying decision-making and risk assessment are 
not fully mature until the mid-twenties, so is the tendency to experiment with stimulants or 
other substances for perceived benefit.56–58 Young adulthood is the period wherein addiction 
and neuropsychiatric conditions are most likely to become symptomatic, making experimen-
tation with powerful prescription medications and psychotropic substances rife with poten-
tial danger.56 Alarmingly, the results of the 2018 National Survey on Drug Use and Health 
(NSDUH) showed that stimulant misuse eclipsed opioid misuse for the second year in a row, 
with 6.5% and 5.5% of young adults between 18 and 25 years of age misusing stimulants and 
opioids, respectively.59

Most non-medical users of stimulants report obtaining the medication from their family, 
friends, or peers.18,19,60 Interestingly, though effective long-term pharmacological manage-
ment of ADHD is associated with overall decreased odds of developing a substance use dis-
order,61–63 between 4% and 35% of college students diagnosed with ADHD report previous 
NMU of their medication.18 Using data published between 2005 and 2019, I calculated the 
pooled prevalence of NMU among Americans aged 18 to 25 years, regardless of their educa-
tional status (Table 3). Although estimates ranged from 2% to 31%,60,85 the estimated mean 
pooled prevalence of NMU among American young adults, including college students, is 
9.21% (Table 3). The 2018 NSDUH found that compared to adults aged 26 years and older, 
young adults reported NMU between 3 times and 4 times more frequently.59 Furthermore, 
Compton, the deputy director of the NIDA, and colleagues recently found young adults to 
have roughly 5 times the odds of initiating NMU than older adults.19,59 Whether there is a 
statistically significant trend toward higher prevalence of NMU among the young adult pop-
ulation is difficult to ascertain given the wide range of estimates in the literature and lack of 
uniform measurement method. Although the NSDUH found a relatively stable 4-year prev-
alence of NMU among young adults, peer- reviewed publications almost uniformly vary from 
the official reports.59 It is unclear why a complete picture of NMU among young adults has 
remained so elusive. Perhaps this is due to geographical differences or cultural idiosyncrasies 
among individual college campuses. Furthermore, this variance is multifactorial: definitions 
(or lack thereof ) of NMU, sample size, classification of drugs, and methodology tend to differ 
from one study to the next.
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Mechanisms of Action

The therapeutic effect of stimulants provides for greater attention to tasks at hand, access to 
working memory, planning, reward processing, and other relevant tasks that constitute executive 
functioning.7 The two neurotransmitters associated with executive functioning, DA and NE, 
are highly concentrated in the prefrontal cortex (PFC) and act intimately in tandem. AMP 
and MPH are known to enhance DA and NE neurotransmission in the PFC by increasing 

Table 3. NMU Prevalence in Young Adults (including college students) Reported Between 
2005 and 2019

Source N Prevalence
Teter et al, 2005 9161 5.4%
Teter et al, 2006 4580 5.9%
Lord et al, 2009 950 5.0%
Weyandt et al, 2009 363 8.9%
Upadhyaya et al, 2010 3307 2.1%
Rabiner et al, 2010 3407 8.9%
Clegg-Kraynok et al, 2011 492 7.0%
Garnier-Dykstra et al 2012 1253 17.7%
Lookatch et al, 2012 206 26.1%
Bavarian et al, 2013 520 25.6%
Hartung et al, 2013 1153 25.9%
Webb et al, 2013 144 15.0%
Wasserman et al, 2014 380 15.2%
Messina et al, 2014 1016 25.4%
Meisel & Goodie, 2015 279 17.2%
Cassidy et al, 2015 2073 11.3%
Gallucci et al, 2015 1020 12%
Weyandt et al, 2016 807 5.9%
Bavarian et al, 2017 554 16.6%
Kinman et al, 2017 988 23%
McCabe et al, 2018 4004 7.3%
Le et al, 2018 939 11.4%
Schulenberg et al, 2019 900 8.3%
Pooled Prevalence 38,496 9.21%
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synaptic availability of DA and NE.43,45,86 Interestingly, the mechanisms of action of AMP and 
MPH differ: MPH is a strong inhibitor of presynaptic dopamine transporters (DAT) and weak 
inhibitor of norepinephrine transporters, whereas AMP competitively inhibits DAT and nor-
epinephrine transporters, increases DA release by inhibiting vesicular monoamine transporter 
2, and blocks monoamine oxidase breakdown of DA and NE.43 The product of both drugs, 
though, is the aforementioned amplified concentration of stimulatory neurotransmitters in the 
synaptic cleft and availability for use.14 See Figure 2 for a simplified visual depiction of AMP 
and MPH mechanisms of action. 

The therapeutic effect of AMP and MPH is dependent upon the rate of release, the dose, and 
the duration of activity of the formulation.14,87 This therapeutic effect has an inverted U-shape: 
up to a point, the increased DA and NE that results from stimulant medications normalizes 
PFC neuronal activity and dysfunctional executive functioning seen in ADHD, but excessive 
DA and NE results in neuronal death, impaired inhibitory signaling, and downstream behav-
ioral consequences.88–90 Therapeutic formulations of MPH and AMP include extended-release 
and immediate-release and are designed to act along this U-shaped dose-response curve. Inter-
estingly, the d-isomer of both AMP and MPH has more potent binding potential than the 
l-isomer for their respective receptors of interest.87 Because d-AMP, the isoform most active 
in common pharmaceutical AMP, blocks reuptake of DA and increases DA and NE neuronal 
firing at therapeutic doses,43,87,91,92 clinicians should be aware of AMP’s broad activity across the 
brain.14 This is especially true in those engaging in NMU, who commonly use supratherapeu-
tic doses.85,93,94 Although meta-analyses have shown MPH and AMP to produce comparable 
benefits in executive functioning, the two have subtly different mechanisms of action.95,96 Like 
AMP, the d-isoform of MPH is the most active form, specifically binding PFC and striatal 
DAT in a dose-dependent relationship.97 This pharmacokinetic similarity explains the shared 
increases in extracellular DA and NE seen, although MPH also agonizes 5-HT1A.43 Adrenergic 

Figure 2. The schematic on the left depicts baseline DA and NE transmission. Much of 
the DA/NE undergoes reuptake into the presynaptic terminal, where it undergoes break-
down by monoamine oxidase (MAO), repackaging, or sequestration. The DA/NE that 
does make it into the synapse binds its respective receptor. AMP and MPH are the shown 
on the right. AMP can diffuse through the cell membrane, where it can bind MAO and 
 transporters. It can also bind to DAT’s, MPH, on the other hand, is a strong inhibitor of 
NET’s.
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receptors are activated, thus encouraging cortical excitability; guanfacine and clonidine, two 
non-stimulant medications used in ADHD management, have been shown to elicit similar 
effects.98 MPH, in a fashion analogous to cocaine but not AMP, does not act directly as a DA/
NE reuptake inhibitor; rather, MPH acts as an inverse agonist of DAT and NE transporters.99 
Lastly, as mentioned previously, MPH inhibits DAT to a greater extent than AMP and thus 
indirectly increases dopaminergic and noradrenergic transmission.43,97

Molecular and Clinical Manifestations of AMP/MPH Neurotoxicity

Molecular—AMP

Most individuals engaging in NMU of AMP experience rapid sensitization. This is due to upreg-
ulation of DAT to accommodate unnatural synaptic DA concentrations, and therefore greater 
doses of AMP are required to achieve the sought-after euphoric effect with each subsequent 
dose.100 It is believed that behavioral reinforcement of euphoria, as well as sensitization (neces-
sitating higher doses for effect),101 is regulated by the nucleus accumbens (NAcc), the region 
of the brain most associated with reward processing, pleasure sensation, and other behavioral 
processes associated with addiction.43 As dose increases beyond the therapeutic range, neuro-
toxic effects of greater DA concentrations begin to unfold in dopaminergic regions such as the 
NAcc, PFC, and the structures along the mesolimbic pathway.102 With chronic high-dose (ie, 
supratherapeutic) stimulant use comes alterations in dopamine receptors 2 and 3, presynaptic 
DA release and synthesis, and postsynaptic DAT availability, indicating a general attenuation of 
dopaminergic circuits.43,88,100,103 In animal models, this is hypothesized to be the result of neu-
ronal death due to oxidative stress.104,105 In order to reach the euphoric effect many individuals 
seek by NMU, continued dose increases are necessary to break through tolerance, and, as the DA 
circuitry is already damaged, NMU escalation adds fuel to the fire. The rare psychoses reported 
among those who use stimulants appropriately, as well as the relatively common ones reported 
in non-medical users, are thought to arise from uncontrolled excitatory signaling resulting from 
aforementioned impairments in inhibitory signaling.88 It is hypothesized that to compensate for 
toxic DA concentrations, affected neurons decrease their DA receptor and transporter availabil-
ity to prevent subsequent excitatory overstimulation.100 The downstream effect of this protective 
mechanism—diminished overall DA availability—results in neuropsychological dysfunction.

Molecular—MPH

Unlike AMP, MPH’s effects on DA and NE are due also to disinhibition of dopamine receptor 2 
and activation of dopamine receptor 1.43 In a murine model, chronic high-dose MPH exposure 
(10 mg/kg daily for 12 weeks) has been associated with increased oxidative stress in nigrostriatal 
dopaminergic neurons, specifically due to heightened sensitivity to the toxin 1-methyl-4-phe-
nyl-1,2,3,6-tetrahydropyridine (MPTP).106 MPTP is a strong substrate for the DA receptor 
and is tightly linked to the etiology and pathophysiology of Parkinson disease (PD).107 Oakes 
and colleagues at East Tennessee State University recently described a dose-dependent eleva-
tion in striatal dopaminergic neuronal DA-quinone production with chronic MPH exposure 
in a murine model.108 As the neuroimmune cascade is activated by oxidative stress, glutathione 
conjugates with the DA-quinone and sequesters it. Unfortunately, as glutathione reserves are 
depleted by chronic use, greater oxidative stress occurs. Although the majority of the literature 
regarding stimulant-induced neurotoxicity has focused on AMP, it is likely that the differ-
ential mechanisms of MPH-induced boosts in catecholamine concentration require specific 
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investigation. This is salient given the differential effects of MPTP on dopaminergic neurons 
exposed to MPH compared to AMP. Whether MPH differs from AMP in its proclivity to 
actually induce Parkinsonism in individuals with ADHD or non-medical users has yet to be 
assessed. Clinicians should consider available evidence from animal and epidemiological studies 
of MPH-induced neuropathology when choosing appropriate treatment for ADHD, especially 
if the patient has a family history of PD.

Clinical—AMP

The most common clinical manifestations of AMP NMU-induced neurotoxicity include stroke, 
Parkinsonism, seizure, and psychosis.109 As the mechanism of action of methamphetamine is 
very similar to that of AMP,110 many of the potential adverse effects of methamphetamine use 
are liable in AMP NMU. The risk for hemorrhagic stroke, but not ischemic stroke, is increased 
between 5- and 7-fold among stimulant users under 45 years of age compared to those who do 
not use.109 Acute cerebrovascular effects (eg, hypertension, tachycardia, cerebral vasospasm) and 
chronic use-induced effects (eg, apoptosis of vascular smooth muscle, atherosclerosis, inflam-
matory vascular processes) of stimulants have been reported to put users at increased later risk 
for arrhythmias and resultant thromboembolism.109 PD is thought to result from reduced stri-
atal DA, DAT, and morphological defects in dopaminergic neurons.111 Given AMP NMU 
is observed to result in what are morphological precursors to PD, the increased risk (1.5–3 
times) and earlier onset (median of 6 years) of PD among those who use high-dose stimulants 
is understandable.109,112 The acutely augmented concentrations of DA associated with AMP 
NMU are also associated with lower concentrations of gamma-aminobutyric acid—the neu-
rotransmitter involved in regulating excitatory and inhibitory signaling in the brain—and may 
lower seizure threshold.113

Finally, the occurrence of psychosis in those using AMP (2.4%) and the high prevalence of 
AMP-induced episodic psychoses’ conversion to schizophrenia (~33%) are clinically salient.114,115 
Acute psychosis, though dynamic and complex, has long been associated with overactive DA 
signaling and transport.116 The pathophysiology of ADHD, as mentioned above, also involves 
dysregulation of DA. Granted, the correlation between DA and ADHD symptomatology is 
inverted in psychosis, but individual risk factors are not infrequently shared between psychiatric 
disorders. Supratherapeutic doses common to NMU are able to manifest psychotic symptoms, 
but the normalizing influence therapeutic AMP has on ADHD-associated DA signaling makes  
psychosis exceedingly rare in patients with ADHD.117 In the context of specifically AMP- 
induced psychosis, repeated use of high-dose stimulants in both therapeutic and misuse con-
texts is associated with greater blood-brain barrier porosity and tight-junction dysfunction.118 
Interestingly, AMP is associated with a 4-fold greater DA release compared to MPH, which 
likely contributes to the greater probability of AMP- than MPH-induced psychosis.119 The 
treatment of both AMP-induced and organic psychoses involves dopamine receptor 2 blockade 
with antipsychotics with the intention to decrease overactive dopamine and associated trans-
mission.115,116 Interestingly, many patients who benefit from DA blockade report adverse effects 
similar to ADHD symptoms: diminished subjective well-being, self-control, and cognitive 
functioning, as well as lethargy and emotional dysregulation.120,121

Clinical—MPH

MPH and AMP neurotoxicity is quite similar at the molecular level. This similarity can be 
mapped onto clinical outcomes, as well, with the important exception of psychosis. Moran 
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and colleagues recently reported results from a large cohort study of individuals using MPH 
and AMP for ADHD.119 They found a 10-year incidence of 1.78 new psychotic episodes per 
1000 person-years in those taking MPH compared to 2.83 new episodes per 1000 person-years 
in those taking AMP. The risk for stimulant-induced psychosis during the study period was 
also significantly attenuated in MPH-treated compared to AMP-treated patients (0.10% and 
0.21%, respectively).119 Interestingly, there also appears to be a greater risk for psychosis in 
patients treated with AMP by physicians without psychiatric training when compared to those 
treated by board-certified psychiatrists.119 This highlights potential implications for the man-
agement of ADHD by primary care physicians and questions whether primary care should be 
the setting wherein ADHD is diagnosed, treated, and followed.

Discussion

The NMU of stimulants by healthy adults leads to mixed results at best and significant decreases 
in neuropsychological performance at worst.46,122–124 Much to the chagrin of healthy college stu-
dents looking for a leg up, college grade point average and NMU are inversely correlated.71, 123 
Attention, inhibitory control, short-term episodic memory, and delayed episodic memory may 
be slightly positively affected by NMU, but cognitive functions such as working memory are 
worsened.122 Concerningly, students reporting their NMU in research settings fail to perceive 
that their use of stimulants carries risk of adverse effects or that NMU fails to produce positive 
changes that are worth the risk. It is therefore unlikely that deleterious neuropsychological and 
neurotoxic outcomes are being considered by those who engage in NMU. In contrast to NMU, 
the employment of prescription stimulants for ADHD is thought to be safe and effective for 
at least the short term.11 Upregulation of DAT, normalization of structural abnormalities, and 
increased striatal DA availability are associated with long-term treatment with MPH in indi-
viduals with ADHD.7,125 Working memory, response inhibition, and reaction time—domains 
commonly affected by ADHD—are reported to be positively impacted behavioral responses to 
the molecular and structural changes associated with treatment.7,126

The prevalence of prescription stimulant misuse in the adult population is deeply con-
cerning at both the public health and clinical levels. This is compounded by the fact that 
the epidemiologic studies included in this review do not report a uniform estimated NMU 
prevalence. This may indicate a weak grasp by the public health community on the problem of 
stimulant NMU. Consideration of the stage of neurodevelopment that many adults reporting 
NMU are in, as well as the general dearth of literature considering long-term therapeutic 
use and NMU of prescription stimulants, will likely be of paramount importance to future 
clinicians treating ADHD and the potential negative sequelae of stimulant use. Future public 
health and clinical education should be augmented to include stimulant misuse trends and 
outcomes as practitioners in both arenas will likely encounter its effects as the population 
ages.127 As clinician societies and government agencies begin requiring drug manufacturers 
to consider long-term effectiveness in their stimulant medications, it is likely ADHD phar-
macotherapy will evolve.

With the exception of just two large-scale studies—the Multimodal Treatment Study of 
Children With ADHD and the Comparison of Methylphenidate and Psychotherapy in Adult 
ADHD Study (COMPAS)—the consideration of pharmacotherapy’s potential benefits and 
risks for patients long term remains wholly inadequate.128–130 For better or worse, current guide-
lines leave the formulation and dose of medication prescribed open to interpretation by clini-
cians.14 The precarious state of ADHD treatment was recently debated in the Journal of the 
American Academy of Child and Adolescent Psychiatry.131,132 Swanson,132 a University of California, 
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Irvine professor of pediatrics and a principal investigator on the COMPAS, recently reported 
that the impressive effect sizes, symptom reduction, and behavioral outcomes associated with 
short-term pharmacotherapy have not conclusively been demonstrated to be maintained in the 
long term. In response to Swanson, Coghill,131 a renowned child/adolescent psychiatrist and 
scientist at the University of Melbourne, wrote that current trials continue to find that long-
term pharmacotherapy is indeed effective when used dynamically, pragmatically, and subject 
to new clinical insights. Coghill’s argument was reinforced by two studies recently published 
in the American Journal of Psychiatry: one finding sustained MPH effectiveness over 2 years in 
pediatric ADHD and the other finding inverse associations between long-term treatment and 
risk for suicide and substance abuse, among other outcomes.133,134

Parallel to substantive change to the ADHD management landscape, long-term, robust 
exploration of differences in outcomes between individuals who begin treatment in adulthood 
versus childhood, potential unknown neurological outcomes in the contexts of both NMU 
and ADHD, and prescription stimulant toxicology is urgently needed. Questions related to 
long-term, consistent treatment with medication across the life span remain wide open to evi-
dence-based and individualized study and conclusions, although the clinical recommendations 
in the DSM-5 remain the gold standard given the current state of treatment options. Lastly, 
though this review of the literature is comprehensive, there are many basic unknowns concern-
ing the relationship between prescription stimulants and neurotoxicity.

Conclusion

This narrative review presented the current understanding of prescription stimulant–induced 
neurotoxicity in both licit and illicit categories found in the literature. Although the sparse 
data available suggest long-term treatment of ADHD to be associated with positive outcomes 
in educational, social, psychological, and emotional domains, it is unclear whether this is due 
to the medications’ continued action or the development of coping mechanisms over time. 
Additionally, as much the same for individuals engaged in NMU of MPH and AMP, future 
work is needed to measure the risks to and outcomes in neurological functioning and safety 
in those being treated for ADHD. It is also important to note that, though a comprehen-
sive range of publications was considered for use in this review, the sheer number of records 
available made universal consideration impossible. Finally, beyond the clinical monitoring and 
treatment of potential sequelae, the public health and clinical communities must play a signifi-
cantly more engaged role in educating the public about the proper use of stimulants—espe-
cially if we aim to prevent increased presentation of prescription stimulant neurotoxicity in the 
future.
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AND English[lang]) AND (( Journal Article[ptyp] OR Review[ptyp]) AND hasabstract[text] 
AND (“2005/01/01”[PDat]: “3000/12/31”[PDat]) AND English[lang] AND (jsubsetaim[text] 
OR medline[sb])))) NOT (infant or trauma or driving or pregnancy or comorbid or autism or 
natural or adjunct or complementary or supplement or mineral or herbal or vitamin or intellec-
tual or disability) Sort by: Best Match Filters: Journal Article; Review; Full text; Publication date 
from 2005/01/01; English; Core clinical journals; MEDLINE - 1992



tucker: prescription stimulant-induced neurotoxicity 14

 open access - michjmed.org

 1. (((amphetamine or methylphenidate or central nervous system stimulant)) AND (toxicology or 
pharmacology or abuse or misuse)) - 96359

 2. (((amphetamine or methylphenidate or central nervous system stimulant)) AND (toxicology or 
pharmacology or abuse or misuse)) AND English[lang] - 87275

 3. (((amphetamine or methylphenidate or central nervous system stimulant)) AND (toxicology 
or pharmacology or abuse or misuse)) AND ( Journal Article[ptyp] OR Review[ptyp]) AND 
English[lang] - 84789

 4. (((amphetamine or methylphenidate or central nervous system stimulant)) AND (toxicology 
or pharmacology or abuse or misuse)) AND ( Journal Article[ptyp] OR Review[ptyp]) AND 
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