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F rom	particle	 physics	 to	 climatology	 to	macroeconomics,	 scien-
tists	confront	phenomena	they	would	like	to	better	understand	
but	which	are	 too	 complex	 to	 study	 in	 realistic	detail.	 In	 such	

situations,	 researchers	 often	 turn	 to	models:	 surrogate	 systems	 that	
are	simpler	or	more	tractable	than	the	target	phenomenon	but	similar	
enough	to	it	to	offer	insight.

Scientists’	 modeling	 practices	 raise	 a	 number	 of	 philosophical	
questions.	Some	especially	challenging	and	 interesting	ones	pertain	
to	unrealistic, fictional	 or	 essentially idealized	models	 and	 their	 role	 in	
science.	Such	models	have	been	a	major	theme	of	recent	work	in	the	
philosophy	 of	modeling,	which	 has	 seen	 debates	 around	 questions	
like	these:

•	 Can	we	gain	genuine	scientific	understanding	from	un-
realistic	models?

•	 Can	 unrealistic	 models	 explain	 anything	 about	 their	
target	systems?	If	so,	is	this	the	source	of	their	ability	to	
generate	understanding?

•	 Are	 unrealistic	 models	 useful	 primarily	 because	 they	
give	 us	 counterfactual	 knowledge	 about	 their	 target	
systems?

My	goal	is	to	bring	pure	mathematics	into	these	conversations.	Doing	
so	is	appropriate	because	mathematicians	are	modelers	too:	models	
of	 all	 sorts,	 and	unrealistic	models	 in	particular,	 are	used	 in	 similar	
ways	and	for	similar	reasons	in	pure	mathematics	as	in	the	empirical	
sciences.

This	 fact	 is	 worth	 advertising	 in	 its	 own	 right.	 Although	 ideal-
ized	models	are	an	indispensable	part	of	the	toolkit	in	many	areas	of	
mathematics,	their	existence	is	rarely	noted	either	by	philosophers	of	
mathematical	practice	or	by	theorists	of	modeling.	Indeed,	as	far	as	I	
am	aware,	no	single	instance	of	modeling	in	this	sense	has	ever	been	
examined	in	detail	—	a	stark	contrast	to	the	myriad	case	studies	from	
across	the	sciences.
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First,	 the	 subject	 matter	 of	 this	 paper	—	mathematics	 and	 mod-
els	—	might	 bring	 to	mind	 the	 branch	 of	mathematical	 logic	 known	
as	model	 theory.	For	 the	model	 theorist,	 a	model	 is	a	 structure	 that	
satisfies	a	given	set	of	sentences	in	a	specified	formal	language	under	
an	 interpretation.	 I	am	not	primarily	 interested	 in	 this	 special	 sense	
of	‘model’	but	rather	in	the	broader	scientific	meaning	of	the	term.	In	
this	broader	sense,	 I	 take	it,	a	model	 is	any	object	M	 that	 is	used	to	
represent	 some	other	phenomenon,	 system,	or	body	of	 information	
P.	There	are	no	a	priori	restrictions	here	on	the	nature	of	M	or	its	rela-
tionship	to	P;	in	particular,	there	is	no	requirement	that	M	satisfy	some	
set	of	sentences	associated	with	P.

Another	clarification.	It	is	in	the	nature	of	a	model	to	take	some	lib-
erties	with	its	target	phenomenon	—	“all	models	are	wrong”,	as	the	say-
ing	goes	—	but	different	models	do	so	in	different	ways	and	to	different	
degrees.	Some	abstract	away	from	irrelevant	details	but	are	otherwise	
largely	 realistic;	 their	 elements	 represent	 only	 real	 features	 of	 the	
target	phenomenon,	all	the	most	important	features	are	represented,	
and	these	representations	are	more	or	less	accurate.	Moreover,	such	
models	 can	 often	 be	 “de-idealized”	 even	 further	without	 fundamen-
tally	changing	their	character	(by	adding	in	missing	details	or	relaxing	
simplifying	assumptions,	for	example).

In	other	 cases,	however,	 the	 relationship	between	 surrogate	 and	
reality	is	less	tidy.	Many	models	explicitly	and	essentially	misrepresent	
key	aspects	of	their	target	phenomena	and	hence	are	nonveridical	in	
a	deeper	sense.	In	these	cases,	no	simple	de-idealization	procedure	is	
available;	the	models	are	what	they	are,	and	function	as	they	do,	pre-
cisely	on	account	of	the	distortions	they	contain.	This	latter	sort	of	case	
is	what	I	mean	by	an	unrealistic model.1

To	get	a	clearer	sense	of	the	distinction,	consider	a	schematic	street	
map	or	a	simple	lunar	model	of	the	tides.	Both	models	omit	some	fea-
tures	of	their	targets:	the	map	may	not	depict	the	relative	widths	of	the	

1.	 Other	names	in	the	literature	for	roughly	this	type	of	model	include	“fictional	
model”,	 “essentially	 idealized	model”,	 “pervasively	distorted	model”,	and	so	
on.

To	begin	to	correct	this	omission,	I	will	first	look	carefully	at	two	ex-
amples	from	contemporary	number	theory:	Cramér’s	random	model	
of	the	primes	and	the	function	field	model of	the	integers.	Both	models	
are	 important	 and	widely	 used	 research	 tools	 about	which	 philoso-
phers	ought	to	be	better	informed.

Perhaps	 more	 importantly,	 attending	 to	 modeling	 in	 mathemat-
ics	can	help	to	settle	some	of	the	contentious	questions	noted	above.	
With	the	help	of	the	two	case	studies,	I	plan	to	argue	that:

•	 Mathematicians	make	extensive	use	of	unrealistic	mod-
els	and	derive	understanding	from	them.

•	 It	is	not	always	the	case	that	this	understanding	is	medi-
ated	by	explanation.	An	unrealistic	model	can	help	us	
understand	a	phenomenon	even	when	it	does	not	offer	
any	explanation	of	the	phenomenon.

•	 It	is	not	always	the	case	that	unrealistic	models	contrib-
ute	 to	understanding	 (or	are	otherwise	useful)	by	 im-
parting	counterfactual	knowledge.

The	 last	 two	 claims,	 in	 particular,	 constitute	 challenges	 to	 popular	
views	 in	philosophy	of	 science.	Taking	cases	 from	mathematics	 seri-
ously,	then,	can	help	move	debates	about	modeling	forward.

In	 §1,	 I	 make	 some	 preliminary	 clarifications	 about	 what	 I	 take	
models	to	be	and	what	makes	a	model	unrealistic.	In	§2	and	§3,	I	dis-
cuss	Cramér’s	model	and	the	function	field	model,	respectively.	In	§4,	I	
answer	the	questions	posed	above	about	understanding,	explanation	
and	counterfactual	knowledge	and	closes	with	a	plea	for	greater	con-
tact	between	pure	mathematics	and	philosophy	of	science.

1. Unrealistic Models In Mathematics

Let	me	begin	with	some	comments	about	the	scope	of	my	study	and	
its	rationale.
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Let	me	start	with	 some	background.	Famously,	and	perhaps	 to	a	
greater	degree	than	any	other	branch	of	mathematics,	number	theory	
is	rife	with	simple	and	natural	questions	that	have	proven	very	hard	to	
answer.	Among	the	most	well-known	examples	are	the	four	Landau	
problems2:

1. Goldbach’s conjecture:	 Is	 every	 even	 integer	 greater	
than	2	the	sum	of	two	primes?

2. Twin Primes conjecture: Are	 there	 infinitely	 many	
pairs	of	prime	numbers	of	the	form	p, p +	2?

3. Legendre’s conjecture: Is	there	a	prime	between	n2	and	
(n +	1)2	for	every	positive	integer	n?

4. Fourth Landau conjecture:	Are	 there	 infinitely	many	
primes	of	the	form	n2	+	1?

Settling	these	conjectures	requires	understanding	the	arrangement	of	
the	primes	among	the	natural	numbers.	This	is	no	easy	task,	because	
“the	series	of	prime	numbers	exhibits	great	irregularities	of	detail”	(In-
gham	 1932,	 1)	 and	 “do[es]	 not	 follow	 any	 apparent	 pattern”	 (Kouk-
oulopoulous	2019,	1).3	The	first	 three	questions	have	thus	remained	
open	for	170	years	or	more.4	Although	existing	technology	still	does	
not	seem	up	to	the	challenge	of	solving	the	Landau	problems,	we	have	
learned	enough	to	make	some	headway.

2.	 Named	for	Edmund	Landau’s	1912	address	to	the	International	Congress	of	
Mathematics,	which	characterized	them	as	“unattackable”	by	the	methods	of	
contemporary	number	theory.

3.	 Of	course,	this	is	not	to	say	that	the	prime	sequence	is	completely	random	(in	
the	sense	that	there	is	no	deterministic	procedure	for	generating	its	terms)	or	
that	the	sequence	has	no	meaningful	structure	at	all.	Neither	of	these	things	
is	true.	The	point	is	that	the	sequence’s	structure	is,	in	certain	respects,	elu-
sive	and	hard	to	study.

4.	 Goldbach’s	conjecture	dates	to	a	letter	from	Goldbach	to	Euler	in	1742	and	is	
one	of	the	oldest	unsolved	problems	in	mathematics.	The	Twin	Primes	con-
jecture	is	first	known	to	have	been	explicitly	stated	by	de	Polignac	in	1849,	but	
the	idea	was	probably	considered	much	earlier.	Legendre’s	conjecture	is	from	
his	Essai sur la Théorie des Nombres,	published	in	1797–98.

streets	or	the	locations	of	alleys	and	unpaved	drives,	while	the	model	
of	the	tides	neglects	the	gravitational	influence	of	the	Sun	and	the	ef-
fects	of	Earth’s	 rotation.	Nevertheless,	both	accurately	 represent	 the	
most	 important	 features	of	 their	 target	 systems	without	 introducing	
major	ontological	or	ideological	distortions.

Compare	Bohr’s	model	of	the	atom	or	Schelling’s	model	of	housing	
segregation.	It	is	essential	to	Bohr’s	model	that	it	portrays	electrons	as	
moving	in	well-defined	orbits	around	their	nuclei,	when	in	fact	they	
do	no	such	thing.	The	electron	orbitals,	as	Alisa	Bokulich	puts	it,	are	
fictions,	which	 “[cannot]	 be	 properly	 thought	 of	 as	 an	 ‘idealization’	
of	 the	 true	quantum	dynamics”	 (Bokulich	2011,	43).	Meanwhile,	 the	
Schelling	model	represents	an	agent’s	housing	choices	as	completely	
determined	by	two	factors:	their	preference	to	be	surrounded	by	a	cer-
tain	percentage	of	neighbors	 from	 their	own	group	and	 the	 current	
composition	 of	 their	 immediate	 neighborhood.	Cost	 considerations	
and	other	 factors	of	obvious	 real-world	 importance	are	absent	 from	
the	model,	which	is	therefore	usually	viewed	as	a	toy	model:	a	“strong-
ly	 idealized”	and	 “extremely	 simple”	 representation	 that	omits	most	
of	the	factors	on	which	the	target	phenomenon	actually	depends	(cf.	
Reutlinger	et	al.	2018).	Unrealistic	models	raise	some	especially	inter-
esting	questions,	and	their	role	in	mathematics	will	be	my	focus	below.

2. The Cramér Random Model

One	phenomenon	often	studied	via	models	is	the	distribution	of	the	
prime	numbers.	In	this	section,	I	describe	one	of	the	most	important	
and	widely	used	of	these:	Cramér’s	random	model	of	the	primes.	Since	
Cramér	introduced	the	model	in	1932,	numerous	refinements,	spinoffs	
and	variants	have	emerged.	Some	of	these	are	more	accurate	or	use-
ful	than	the	original	model	for	certain	purposes.	I	focus	mostly	on	the	
original	here,	because	it	is	the	simplest	and	remains	in	frequent	use.
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3,	4,	6,	11,	12,	25,	26,	28,	32,	34,	35,	36,	43,	57,	66,	68,	80,	83,	
87,	93,	…

100005,	 100006,	 100008,	 100018,	 100045,	 100055,	
100074,	100094,	100096,	100106,	…

Think	of	 this	 set	 as	 a	model	of	 the	 real	 sequence	of	primes.	By	 the	
consequence	 of	 the	 prime	 number	 theorem	 mentioned	 above,	 the	
“primes”	in	Cramér’s	model	will	have	the	same	asymptotic	density	in	
the	natural	numbers	as	the	real	primes	(with	probability	1)	—	one	can	
observe,	for	instance,	that	the	larger	terms	in	the	sample	sequence	are	
spaced	out	somewhat	more	than	the	smaller	ones.	So,	it	is	reasonable	
to	hope	that	other	statistical	and	distributional	properties	of	the	real	
prime	sequence	will	also	resemble	those	of	the	model.	(Note,	by	the	
way,	that	“the	model”	here	refers	to	an	arbitrary	sequence	generated	
by	Cramér’s	procedure,	not	to	any	definite	sequence	in	particular.	Cor-
respondingly,	claims	of	the	form	“P	is	true	in	the	model”	mean	that	P 
holds	for	an	arbitrary	such	sequence	with	probability	1,	perhaps	with	
finitely	many	exceptions.7)

Given	that	the	“Cramér	primes”	and	the	real	primes	are	similarly	
distributed	in	ℕ,	what	is	the	benefit	of	working	with	the	former	instead	
of	the	latter?	As	it	turns	out,	it	is	much	easier	to	study	the	statistics	of	
distributions	with	strong	joint	independence	properties,	like	those	of	
the	random	model.8	Consequently,	we	know	a	lot	about	the	behavior	
of	the	surrogate	primes.

Some	 of	 these	 facts	 were	 independently	 known	 or	 strongly	 be-
lieved	to	be	true	of	the	actual	primes,	while	other	claims	are	consid-
ered	to	have	gained	support	from	the	fact	that	they	hold	in	the	model	

7.	 A	bit	more	precisely	and	in	terms	of	a	concrete	example:	the	claim	that	Gold-
bach’s	 conjecture	 holds	 in	 Cramér’s	model	means	 that,	 in	 an	 arbitrary	 se-
quence	of	Cramér	primes,	with	probability	1,	the	number	of	ways	to	express	
an	even	integer	n	as	a	sum	of	two	primes	grows	large	as	n → ∞.	(We	cannot	yet	
even	prove	that	this	limit	is	bigger	than	zero	in	the	case	of	the	actual	primes.)

8.	 Recall	that	each	choice	of	a	Cramér	prime	is	made	independently	of	all	the	
other	choices.	Things	obviously	do	not	work	this	way	in	the	real	world;	if	p	is	
an	odd	prime,	for	instance,	then	p +	1	and	2p	are	necessarily	composite.

The	very	first	 relevant	discovery	was	Euclid’s	 theorem	 that	 there	
are	infinitely	many	prime	numbers.	This	is	a	precondition	for	the	con-
jectures’	possible	truth,	but	not	helpful	for	their	resolution,	because	it	
does	not	provide	any	information	about	the	distribution	of	the	primes.	
For	this,	we	need	the	much	more	recent	prime	number	theorem	(PNT; 
1896,	proved	independently	by	Hadamard	and	de	la	Vallée	Poussin).	
Where	 log	x	 is	 the	natural	 logarithm	and	π(x)	 is	 the	prime-counting	
function	 (giving	 the	number	of	 primes	 less	 than	or	 equal	 to	x),	 the	
PNT	says	that

π(x) ~ x	/	log	x,

i.e.,	that	the	number	of	primes	up	to	x approaches	x /	log	x	as	x	goes	to	
infinity.	This	means	that	the	primes	steadily	thin	out	among	the	natu-
ral	numbers	but	at	a	relatively	slow	rate.	A	consequence	of	the	PNT	is	
that,	for	sufficiently	large	n,	the	probability	that	n	is	prime	is	about	1	/	
log	n	—	a	fact	we’ll	return	to	below.5

Unfortunately,	this	still	does	not	provide	enough	information	about	
the	distribution	of	 the	primes	 to	 settle	Landau’s	problems.	 (A	proof	
of	the	Riemann	Hypothesis	would	help,	because	it	can	be	viewed	as	
an	improvement	on	the	PNT,	bounding	how	far	off	π(x)	can	be	from	
x /	log	x.	But	such	a	proof	seems	unlikely	to	be	forthcoming	any	time	
soon.)

In	 view	 of	 these	 difficulties,	 the	 Swedish	mathematician	 Harald	
Cramér	proposed	a	new	way	of	approaching	the	distribution	problem.	
Rather	than	directly	studying	the	primes	themselves,	he	constructed	
a	more	 tractable	 surrogate,	 now	known	as	 “Cramér’s	model”	 or	 the	
“random	model”	of	the	primes.	The	idea,	set	out	in	Cramér	(1936),	is	to	
build	a	subset	of	the	natural	numbers	by	independently	choosing	to	
include	each	n	>	2	with	probability	1	/	log	n.	The	resulting	sequence	
might	look	something	like	this:6

5.	 To	see	this,	note	that	there	are	about	n	/	log	n	prime	numbers	among	the	first 
n	integers.	So	the	probability	that	any	given	number	between	1	and	n	is	prime	
is	(n /	log	n) / n	=	1	/	log	n.

6.	 These	are	excerpts	from	a	sequence	generated	by	Mathematica	code	written	
by	Glenn	Harris.	Many	thanks	to	Glenn	for	the	code.
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that	“the	probabilistic	model	usually	gives	one	a	strong	indication	of	
the	truth”	(Granville	1995b,	391).	In	Tao’s	words,	“[we]	have	a	number	
of	extremely	convincing	and	well	supported	models	for	the	primes	…	
the	most	accurate	[of	these]	in	practice	are	random	models”	(Tao	2015).

Since	 Cramér-type	 models	 have	 proven	 generally	 reliable	 in	 re-
gimes	where	their	predictions	can	be	verified,	number	theorists	view	
them	as	useful	guides	to	unknown	territory.	Their	contributions	along	
these	lines	fall	into	at	least	three	categories:	(1)	increasing	or	decreas-
ing	our	confidence	in	conjectures	derived	from	independent	sources;	
(2)	 motivating	 entirely	 new	 conjectures;	 and	 (3)	 suggesting	 novel	
methods	of	proof.

Let	us	start	with	(1).	As	mentioned	above,	a	number	of	fundamental	
statements	in	number	theory	are	known	to	hold	in	the	Cramér	model	
but	 are	not	 yet	 known	 to	hold	 for	 the	actual	primes.	These	 include	
the	Riemann	Hypothesis	(RH)	and	the	four	Landau	conjectures.	Each	
of	 these	 hypotheses	was	 suspected	 to	 be	 true	 before	 the	 advent	 of	
the	Cramér	model.	But	the	results	from	the	model	served	to	increase	
mathematicians’	confidence,	in	some	cases	significantly.	For	instance,	
van	der	Poorten	claims	that	“the	most	compelling”	evidence	in	favor	
of	RH	is	the	fact	that	it	holds	in	a	related	random	model	of	the	primes,	
the	Hawkins	model	(van	der	Poorten	1996,	147).12	Similarly,	according	
to	Patterson’s	textbook	on	the	zeta	function,	the	validation	of	RH	by	
random	models	 “represents	 one	 of	 the	more	 reassuring	 reasons	 for	
expecting	the	Riemann	Hypothesis	to	be	true”	(Patterson	1988,	75).

The	credence	calibration	provided	by	Cramér-style	models	extends	
much	further,	as	elaborated	on	by	Tao.	In	the	setting	of	these	models,	
he	writes,	“many	difficult	conjectures	on	the	primes	reduce	to	relative-
ly	simple	calculations	…	Indeed,	the	models	are	so	effective	at	this	task	
that	analytic	number	 theory	 is	 in	 the	curious	position	of	being	able	

accuracy	does	not	imply	the	ability	to	do	the	same	with	fine-grained	details	
over	short	intervals.

12.	 The	Hawkins	model	generates	a	set	of	surrogate	primes	by	a	random	sieve	
technique.	For	an	accessible	introduction	to	the	Hawkins	model,	including	a	
comparison	with	the	Cramér	model,	see	Lorch	&	Ökten	(2007).

(e.g.	the	Riemann	Hypothesis	and	the	Landau	conjectures).	Yet	other	
hypotheses	were	originally	motivated	by	observations	about	the	mod-
el	itself.	Among	these	is	the	important	Cramér	conjecture	on	the	sizes	
of	gaps	between	primes,9	introduced	in	Cramér’s	original	paper	on	the	
model,	which	even	in	recent	years	“does	not	seem	to	be	attackable	by	
other	methods”	(Granville	1995b,	391).

I	want	to	make	one	observation	and	two	more	substantive	claims	
about	this	case.	The	observation	is	that	the	Cramér	model	is	manifest-
ly	not	a	model	of	the	theory	of	the	primes	in	the	model-theoretic	sense.	
There	are	many	sentences	true	of	the	real	primes	that	are	false	of	the	
Cramér	primes	(for	 instance,	“exactly	one	even	number	 is	prime”).10 
So,	model	theory	is	not	the	proper	framework	for	thinking	about	this	
situation,	as	per	the	remarks	in	§1.

The	first	substantive	claim	I	want	to	defend	is	that	Cramér’s	model	
(and	similar	random	models)	have	significantly	improved	our	under-
standing	of	the	distribution	of	the	primes.	The	model	makes	several	
kinds	of	epistemic	contribution.

To	 start	 with,	 mathematicians	 take	 the	 model	 seriously	 because	
it	 correctly	 predicts	 many	 known	 facts	 about	 the	 primes.	 Kannan	
Soundararajan	 notes,	 for	 instance,	 that	 “the	 Cramér	 model	 makes	
accurate	predictions	 for	 the	distribution	of	primes	 in	[very]	short	 in-
tervals”	(Soundararajan	2007a,	64).	(Note	that	this	is	not	just	a	trivial	
consequence	of	 the	 fact	 that	 the	model	 gets	 the	 asymptotic	density	
right;	two	sequences	can	have	similar	long-run	behavior	without	look-
ing	alike	at	 small	 scales.11)	More	generally,	Andrew	Granville	writes	

9.	 Cramér’s	 conjecture	 is	 the	 statement	 that,	 for	Pn	 the	nth	 prime,	 the	 differ-
ence	P(n+1) – Pn	is	asymptotically	bounded	by	(log(p–n))2.	Hence,	the	gaps	
between	consecutive	primes	are	consistently	small	in	the	long	run.

10.	 I	am	assuming	 that	sentences	 like	 these	are	given	 their	obvious	 interpreta-
tions	in	the	model.

11.	 As	 Colin	McLarty	 put	 the	 point	 in	 correspondence:	 “A	 similar	 fallacy,	 fed	
by	motivated	thinking,	is	important	today	when	climate	change	deniers	say	
things	like	‘They	can’t	even	be	sure	if	it	will	rain	next	Sunday!	How	can	they	
make	predictions	about	20	years	from	now?’”	In	general,	the	moral	is	that	the	
ability	to	predict	large-scale	trends	over	long	intervals	with	a	high	degree	of	
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rather	 than	as	 tools	 for	proving	theorems.	Nevertheless,	 in	 the	view	
of	the	number	theorist	János	Pintz,	“probabilistic	models	can	help	or	
could	have	helped	not	only	to	conjecture	but	also	prove	results	about	
primes”	 (Pintz	 2007,	 362).	 Pintz	 goes	 on	 to	 show	 how	 a	 particular	
result	—	Maier’s	 theorem	about	 the	number	of	primes	 in	 small	 inter-
vals	—	could	have	been	established	much	earlier	using	a	modified	Cra-
mér	model.

In	addition	to	these	three	applications,	Tao	mentions	several	other	
uses	of	random	models:	“providing	a	quick	way	to	scan	for	possible	
errors	in	a	mathematical	claim	(e.g.	by	finding	that	the	main	term	is	
off	 from	what	a	model	predicts	…);	gauging	 the	relative	strength	of	
various	assertions	(e.g.	classifying	some	results	as	‘unsurprising’	[and]	
others	as	‘potential	breakthroughs’	…);	or	setting	up	heuristic	barriers	
…	that	one	has	to	resolve	before	resolving	certain	key	problems”	(Tao	
2015).	In	view	of	these	various	uses,	benefits	and	insights,	I	conclude	
that	 number	 theorists	 have	 gained	 significant	 understanding	 from	
Cramér-type	models.

One	could	try	to	push	back	against	this	claim	by	noting	the	lack	of	
philosophical	consensus	around	the	notion	of	understanding.	In	the	
absence	of	a	widely	accepted	explicit	theory,	which	criteria	are	being	
used	to	judge	cases	such	as	this?	And	why	should	we	think	those	cri-
teria	are	appropriate?

It	 is	 true	 that	philosophers	disagree	about	understanding.	For	 in-
stance,	 some	 equate	 understanding	 a	 phenomenon	with	 having	 an	
explanation	of	it	(Strevens	2013).	Others	link	understanding	with	the	
possession	of	certain	abilities	(Delarivière	&	Van	Kerkhove	2021),	with	
suitably	structured	knowledge	(Kelp	2015),	or	with	the	disposition	to	
generate	new	knowledge	from	a	minimal	core	(Wilkenfeld	2019).	I	do	
not	take	sides	in	this	debate	here	(although	I	do	argue	against	the	ex-
planation	account	in	§4,	below).	My	approach	is	different,	and	it	has	
two	components.	First,	I	claim	that	the	Cramér	model	ought	to	count	
as	a	source	of	understanding	on	any	reasonable	view	—	the	same	goes	
for	 the	function	field	model	discussed	in	the	next	section.	Second,	 I	

to	 confidently	predict	 the	 answer	 to	 a	 large	proportion	of	 the	open	
problems	in	the	subject,	whilst	not	possessing	a	clear	way	forward	to	
rigorously	confirm	these	answers!”	(Tao	2015).

Let	us	now	turn	to	(2),	new	conjectures.	In	addition	to	bolstering	
confidence	in	independently	motivated	hypotheses,	“the	probabilistic	
heuristic,	in	which	independence	is	assumed,	provides	a	useful	means	
of	constructing	conjectures”	(Montgomery	&	Vaughan	2007,	57).13	The	
most	 famous	of	these	is	 the	Cramér	conjecture	on	prime	gaps,	men-
tioned	above,	which	Cramér	arrived	at	by	way	of	the	model.	Random	
models	have	also	led	to	progress	in	other	parts	of	number	theory.	One	
example	is	the	theory	of	“lucky	numbers”	(the	sequence	1,	3,	7,	9,	13,	15,	
21,	25,	…,	generated	by	a	certain	sieve	process).14	On	the	basis	of	his	
random	model	of	the	primes,	Hawkins	conjectured	(in	Hawkins	1957)	
and	was	 later	able	 to	prove	(in	Hawkins	&	Briggs	1957)	a	PNT-type	
result	 for	 lucky	numbers,	 to	 the	 effect	 that	 their	 asymptotic	 density	
in	the	natural	numbers	is	also	1	/	log	n.	Random	models	continue	to	
be	deployed	on	the	front	lines	of	research,	sometimes	in	novel	ways.	
For	example,	Lozano-Robledo	(2020)	“propose[s]	a	new	probabilistic	
model	for	the	distribution	of	ranks	of	elliptic	curves	…	in	the	spirit	of	
Cramér’s	model	 for	 the	prime	numbers”	 (2),	which	 is	used	 to	gener-
ate	predictions	about	the	number	of	elliptic	curves	of	a	given	rank.	In	
general,	then,	Cramér-type	models	“[give]	a	clearer	indication	of	what	
results	one	expects	to	be	true,	thus	guiding	one	to	fruitful	conjectures”	
(Tao	2015).

Finally,	 let	 us	 consider	 (3),	 novel	methods	 of	 proof.	As	we	 have	
seen,	models	of	the	primes	are	generally	used	for	heuristic	purposes	

13.	 “The	 probabilistic	 heuristic,	 in	which	 independence	 is	 assumed”	 refers,	 of	
course,	 to	 the	 method	 of	 constructing	 random	 models	 by	 independently	
choosing	surrogate	primes.

14.	 The	lucky	numbers	are	generated	in	the	following	way.	First	list	all	the	natural	
numbers	starting	with	1.	Then	cross	out	every	second	number,	 leaving	the	
sequence	1,	3,	5,	7,	9,	11,	….	Next	cross	out	every	third	number,	leaving	1,	3,	7,	
9,	13,	15,	….	At	every	successive	step,	cross	out	every	nth	number,	where	n	is	
the	first	surviving	number	on	the	list	such	that	every	nth	number	has	not	yet	
been	crossed	out.
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understanding	the	distribution	of	the	prime	numbers.	I	take	this	to	be	
a	case	of	understanding	a	phenomenon,	as	opposed	to,	say,	a	case	of	
understanding-why.)

The	 second	main	 claim	of	 this	 section	 is	 that	Cramér’s	model	 is	
quite	unrealistic,	 in	 the	 sense	discussed	 in	 §1	 above.	That	 is,	 rather	
than	a	mild	 idealization	that	merely	abstracts	away	 from	inessential	
details,	 the	model	 involves	 an	 explicit	 and	 extensive	misrepresenta-
tion	of	its	subject	matter.

One	major	distortion	is	that	the	Cramér	primes	are	chosen	proba-
bilistically,	but	the	actual	primes	are	not	 in	any	sense	random.	Rath-
er,	as	George	Pólya	says,	whether	or	not	a	number	 is	prime	“can	be	
decided	by	 the	 ‘definite	 rules’	of	arithmetic	—	where	and	how	could	
chance	enter	the	picture?”	(Pólya	1959,	376).	Although	the	assumption	
of	randomness	is	unrealistic,	it	is	essential	to	all	Cramér-type	models.	
There	is	no	prospect	of	de-idealizing	to	remove	this	assumption	with-
out	discarding	the	model	framework	entirely.

Cramér’s	model	also	 fails	 to	capture	 the	 important	multiplicative	
structure	of	the	actual	primes	—	for	instance,	the	fact	that	if	p	is	prime	
then	n	∙	p	cannot	be.	(Recall	that	the	Cramér	primes	are	chosen	inde-
pendently,	so	the	selection	of	one	number	has	no	effect	on	the	prob-
ability	 of	 choosing	 any	 other	 number.)	Hence	 the	model	 generates	
infinitely	many	even	primes,	pairs	of	consecutive	primes,	and	other	
absurdities	—	for	example,	 in	 the	run	of	 the	Cramér	algorithm	given	
above,	34,	35,	and	36	are	all	chosen.	Some	modifications	of	the	simple	
Cramér	model	 reintroduce	basic	aspects	of	 the	actual	multiplicative	
structure	 of	 the	 primes,	 such	 as	 by	 forbidding	 even	 primes	 greater	
than	2.	But	going	much	further	 in	the	direction	of	realism	would	be	
counterproductive,	because	 the	 joint	 independence	of	 the	surrogate	
primes	 is	 exactly	 the	 feature	 that	makes	 the	models	more	 tractable	
than	the	real	primes.

Thus,	“[d]espite	its	predictive	power,	Cramér’s	model	is	a	vast	over-
simplification”	(Klarreich	2018a,	25)	—	indeed,	a	distortion	—	of	its	tar-
get,	the	prime	number	sequence.	This	is	interesting	for	a	number	of	
reasons,	most	obviously	because	 it	 shows	 that	mathematicians,	 like	

offer	 the	 appraisals	 of	 mathematicians	 themselves,	 which	 I	 take	 to	
count	at	least	as	strongly	as	philosophical	arguments	in	this	context.15

The	Cramér	model,	as	just	shown,	has	strengthened	number	theo-
rists’	confidence	in	some	important	hypotheses	and	has	played	a	key	
role	in	generating	others.	It	has	led	to	a	clearer	overall	picture	of	the	
phenomena.	It	helps	mathematicians	organize,	justify,	and	check	their	
reasoning.	It	would	be	a	tendentious	and	implausible	theory	that	re-
garded	these	achievements	as	insufficient	for	improving	understand-
ing.	In	particular,	the	model	evidently	confers	abilities	associated	with	
understanding,	 lends	valuable	 structure	 to	number	 theorists’	 knowl-
edge,	and	allows	much	novel	information	to	be	spun	out	from	a	com-
pact	representational	core.	So,	 theories	 in	the	spirit	of	 the	 last	 three	
mentioned	above	will	count	the	model	as	a	source	of	understanding.	
This	seems	correct.

What	is	more,	the	same	conclusion	has	been	reached	by	number	
theorists	 who	 are	 intimately	 familiar	 with	 the	 model	 and	 its	 uses.	
Granville,	for	instance,	refers	to	“Cramér’s	probabilistic	approach	[to]	
understanding	 the	distribution	of	 prime	numbers,	which	underpins	
most	of	the	heuristic	reasoning	still	used	in	the	subject	today”	(Gran-
ville	 1995a,	 15).	 Absent	 compelling	 reasons	 to	 do	 otherwise,	 good	
methodology	recommends	taking	such	judgments	at	face	value.16

I	 conclude	 from	 these	 considerations	 that	 the	 Cramér	 mod-
el	 is	 a	 source	 of	 understanding.	 (To	 be	 precise,	 it	 contributes	 to	

15.	 This	is	not	to	suggest	that	philosophers	should	mechanically	rubber-stamp	
any	opinion	a	mathematician	expresses	in	print.	Experts	in	every	field	make	
mistakes	and	throwaway	comments;	taking	mathematical	practice	seriously	
also	means	exercising	discretion	 in	choosing,	 reading,	and	 interpreting	po-
tential	sources	of	evidence.	But	it	is	true,	nevertheless,	that	the	relevant	spe-
cialists	are	better	positioned	than	most	philosophers	to	judge	what	qualifies	
as	 a	 source	 of	mathematical	 understanding.	When	 the	 best-informed	 and	
most	thoughtful	experts	make	such	judgments	deliberately,	repeatedly,	and	
for	coherent	reasons,	taking	their	word	for	it	is	the	appropriate	default.

16.	 One	such	reason	might	be	that	 the	experts	disagree	among	themselves.	 In	
such	cases,	philosophy	can	play	a	useful	role	by	investigating	the	source	and	
nature	of	the	disagreement.	For	a	mathematical	case	study,	see	D’Alessandro	
(2020).	See	also	the	previous	footnote	for	further	elaboration	of	this	episte-
mological	stance.
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coefficients	from	F.	The	role	of	positive	integers	in	the	model	is	played	
by	monic	polynomials,	i.e.	polynomials	of	the	form	tn + an–1t

n-1 +	…	+	a1t 
+ a0	with	leading	coefficient	1.

(Some	 relevant	 definitions:	 a	 field is	 an	 algebraic	 structure	 with	
commutative	addition	and	multiplication	operations	 in	which	every	
non-zero	element	has	both	an	additive	 inverse	and	a	multiplicative	
inverse.	The	real	numbers	are	a	familiar	example.	A	finite field	is	a	field	
with	 finitely	many	 elements.	 In	 fact,	 a	 finite	 field	 always	 has	pn	 ele-
ments,	with	p	prime	and	n	≥	1.	The	simplest	examples	are	the	fields	
𝔽p,	whose	elements	are	{0,	1,	2,	…,	p –	1}.	Addition	in	𝔽p	works	like	ad-
dition	modulo	p.	For	example,	in	the	field	with	seven	elements	𝔽7,	we	
have	5	+	6	=	11	(“mod”	7)	=	4.)

In	 the	 function	field	model,	arithmetical	operations	on	fine-scale	
terms	 do	 not	 affect	 the	 values	 of	 coarse-scale	 terms	 and	 vice	 versa.	
Compare	adding	(t2	+	2t	+	5)	+	(t	+	6)	in	𝔽7[t],	for	example,	with	the	
analogous	 125	 +	 16	 in	ℤ.18	 The	 latter	 exhibits	 spillover,	 because	 the	
units-place	sum	(5	+	6	=	11)	contributes	1	to	the	tens-place	result.	But	
not	so	in	the	model.	In	𝔽7[t],	as	noted	above,	5	+	6	equals	4,	and	so	the	
sum	(t2	+	2t	+	5)	+	(t	+	6)	=	t2	+	3t	+	4	is	spillover-free.

Another	 important	 feature	 of	 the	 function	 field	model	 is	 that	 its	
surrogate	 “integers”,	 being	polynomials,	 have	non-trivial	 derivatives.	
(The	derivative	of	an	ordinary	integer	is,	of	course,	always	0.)	I	will	say	
more	about	why	this	is	useful	below.

F[t]	might,	at	first	glance,	seem	like	a	strange	model	for	the	integers.	
Why	would	representing	numbers	as	polynomials	be	appropriate,	and	
how	might	it	be	useful?	As	Michael	Rosen	writes	(in	his	textbook	on	
the	subject,	Number Theory in Function Fields):

is	generally	applied	to	all	models	in	this	family,	including	F[t]	as	a	model	for	ℤ.

18.	 This	example	should	not	be	taken	too	literally.	The	function	field	model	gen-
erally	deals	with	an	arbitrary	finite	field	F	rather	than	a	specific	one	like	𝔽7, 
and	it	generally	does	not	assign	specific	polynomials	to	serve	as	the	represen-
tatives	of	specific	integers.	The	point	is	just	to	compare	spillover	in	ℤ	with	its	
absence	in	function	fields.

empirical	scientists,	make	serious	use	of	unrealistic	models	and	rely	
on	 them	 to	 gain	 understanding.	 I	 defer	 discussion	 of	 further	 philo-
sophical	 consequences	 to	 §4	 below,	 after	 discussing	my	 second	 ex-
ample	in	the	next	section.

3. The Function Field Model of the Integers

This	 section	discusses	 so-called	dyadic models	of	 linear	 structures,	 in	
particular	the	model	of	the	integers	as	polynomials	over	a	finite	field.	
This	is	a	further	example	of	an	unrealistic	model	in	widespread	use	as	
a	source	of	mathematical	understanding.	This	second	case	also	bears	
consequentially	on	 the	questions	about	modeling	mentioned	at	 the	
start	of	the	paper.

Dyadic	models	in	mathematics	take	on	a	variety	of	forms	depend-
ing	on	the	settings	in	which	they	are	deployed,	which	range	from	dif-
ferential	equations	and	harmonic	analysis	to	combinatorics	and	num-
ber	 theory.	 But	 a	 common	motivation	 for	 using	 such	models	 is	 the	
desire	to	avoid	spillover	between	scales	exhibited	by	the	integers,	real	
numbers,	cyclic	groups,	and	other	linearly	structured	sets.

I	will	focus	here	on	the	integers.	One	manifestation	of	the	spillover	
phenomenon	in	this	domain	is	the	need	to	carry	digits	when	adding	
numbers	together.	In	the	sum	28	+	75	=	103,	for	example,	the	addition	
of	8	and	5	in	the	units	place	spills	over	to	affect	the	values	in	the	tens	
and	hundreds	places.	This	kind	of	interaction	between	fine	and	coarse	
scales	can	be	inconvenient.	For	instance,	when	adding	many	integers	
together,	an	accumulation	of	tiny	(“fine-scale”)	errors	can	significantly	
distort	the	final	(“coarse-scale”)	result.

The	most	common	dyadic	model	of	the	integers	is	the	ring	of	poly-
nomials	F[t]	 over	 a	finite	field	F.	 This	 is	 known	as	 the	 function field 
model	 of	 the	 integers.17	 The	 elements	 of	 F[t]	 are	 polynomials	 with	

17.	 The	terminology	here	is	standard	but	a	bit	confusing.	The	ring	of	polynomials	
F[t]	is	not	itself	a	function	field,	as	it	is	not	a	field	at	all.	The	model’s	namesake	
is	rather	the	rational	function	field	F(t),	consisting	of	polynomials	with	coef-
ficients	 in	F	 and	 their	multiplicative	 inverses.	Because	 it	 contains	 fractions,	
the	 function	field	F(t)	 is	most	naturally	viewed	as	a	model	 for	 the	 rational	
numbers	ℚ.	But	the	name	“function	field	model”	(or	“function	field	analogy”)	
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a	simple	proof	of	Fermat’s	Last	Theorem.	So	abc	is	of	great	interest	to	
number	theorists.19

It	is	therefore	significant	that	the	counterpart	of	the	abc	conjecture,	
known	as	the	Mason–Stothers	theorem,	is	known	to	hold	in	the	func-
tion	 field	 model.	 The	 Mason–Stothers	 theorem	 concerns	 relatively	
prime	polynomials	a(t), b(t), c(t),	not	all	constant	and	with	a + b = c.	
Where	D	is	the	degree	of	the	product	of	the	distinct	irreducible	factors	
of	a, b,	and	c,	 the	theorem	asserts	 that	D	 is	significantly	bigger	than	
the	maximum	among	the	degrees	of	a, b,	and	c.	The	Mason–Stothers	
theorem	has	an	elementary	proof	in	F[t]	based	on	taking	derivatives	
of	a, b,	 and	 c	 (Snyder	2000)	—	a	 trick	unavailable	 for	proving	abc	 in	
the	integers.	This	is	an	example	of	the	aforementioned	usefulness	of	
derivatives	in	the	function	field	model.

The	abc	 conjecture	 is	 just	 one	hypothesis	on	which	 the	 function	
field	model	 sheds	 light.	As	Rudnick	 notes,	 a	 variety	 of	 classic	 prob-
lems	“which	are	currently	viewed	as	intractable	over	the	integers,	have	
recently	been	addressed	 in	 the	 function	field	 context	…	and	 the	 re-
sulting	theorems	can	be	used	to	check	existing	conjectures	over	the	
integers,	and	to	generate	new	ones”	(Rudnick	2014,	443).	(Rudnick’s	
paper	discusses	five	such	problems.)

In	some	cases,	results	 in	the	function	field	model	can	be	used	to	
directly	 prove	 the	 corresponding	 statements	 in	 ordinary	 number	
theory.	One	example	is	the	Ax–Kochen	theorem,	an	important	result	
concerning	the	zeroes	of	certain	polynomials	over	the	p-adic	numbers.	
In	the	standard	proof	of	Ax–Kochen,	the	first	step	is	to	show	that	the	
analogous	claim	holds	in	the	function	field	model.	Using	the	transfer	
principle	 technique	 from	model	 theory,	 it	 is	 then	possible	 to	 import	

19.	 Notoriously,	the	Japanese	mathematician	Shinichi	Mochizuki	has	claimed	to	
have	proven	abc	 since	2012,	but	 the	consensus	among	number	 theorists	 is	
that	the	proof	is	unconvincing	and	the	conjecture	remains	open.	See	Dutilh	
Novaes	(2013)	 for	a	philosophical	analysis	and	Klarreich	(2018b)	 for	an	ac-
count	of	 recent	developments,	 including	Peter	Scholze	and	 Jakob	Stix’s	en-
gagement	with	Mochizuki	and	their	claim	that	his	proof	contains	an	unfix-
able	gap.

Early	on	…	it	was	noticed	that	ℤ	has	many	properties	in	
common	[with	F[t]]	…	Both	rings	are	principal	ideal	do-
mains	…	both	rings	have	infinitely	many	prime	elements,	
and	both	rings	have	finitely	many	units.	Thus,	one	is	led	
to	suspect	that	many	results	which	hold	for	ℤ	have	ana-
logues	[in	F[t]].	This	is	indeed	the	case.	(Rosen	2002,	vii)

In	other	words,	the	two	structures	have	importantly	similar	algebraic	
properties.	Hence,	“number	theory	in	F[t]”	should	(and	does)	resem-
ble	ordinary	number	theory	to	a	significant	degree.	The	study	of	func-
tion	fields	as	a	source	of	number-theoretic	insight	goes	back	at	least	
to	Dedekind	and	Weber’s	1882	paper	“Theory	of	Algebraic	Functions	
of	One	Variable”	 (Dedekind	&	Weber	 2012).	As	 the	 translator	 John	
Stillwell	notes,	“the	paper	revealed	the	deep	analogy	between	number	
fields	and	function	fields	—	an	analogy	that	continues	to	benefit	both	
number	theory	and	geometry	today”	(vii).

Indeed,	the	function	field	model	has	proven	fruitful	in	many	ways.	
Several	of	its	uses	resemble	those	of	Cramér’s	model	of	the	primes:	in-
creasing	our	confidence	in	independent	hypotheses,	suggesting	new	
conjectures,	and	offering	novel	methods	of	proof.	The	function	field	
model	is	also	unique	in	at	least	one	important	way:	it	suggests	to	many	
mathematicians	that	 there	ought	 to	exist	a	novel	kind	of	object,	 the	
“field	with	one	element”,	to	complete	certain	aspects	of	the	correspon-
dence	between	F[t]	and	ℤ.	If	efforts	to	make	sense	of	this	notion	prove	
successful,	momentous	developments	in	algebra,	number	theory	and	
geometry	are	expected	to	ensue.

Let	me	fill	in	some	details,	starting	with	the	first	items	mentioned	
above.	A	famous	open	problem	in	number	theory	is	the	abc	conjecture	
of	Oesterlé	and	Masser.	The	conjecture	is	roughly	as	follows:	Let	a,b,c 
be	relatively	prime	integers	such	that	a + b = c,	and	let	D	denote	the	
product	of	the	distinct	prime	factors	of	abc.	Then	c	is	significantly	big-
ger	than	D	in	only	finitely	many	cases.	Many	other	major	conjectures	
are	known	to	be	true	conditional	on	the	truth	of	abc;	it	would	also	yield	
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first	step	in	this	process	is	to	identify	the	curve	C	such	that	ζC	 is	the	
ordinary	Riemann	zeta	function	that	features	in	RH.	This	curve	turns	
out	to	be	the	spectrum	of	the	integers,	Spec	ℤ.	The	remaining	task	is	to	
specify	the	base	field	over	which	Spec	ℤ	is	to	be	viewed	as	a	function	
field.	It	is	at	this	point	that	the	field	with	one	element	enters	the	scene:

The	analogy	between	number	fields	and	function	fields	
finds	 a	 basic	 limitation	with	 the	 lack	 of	 a	 ground	 field.	
One	 says	 that	Spec	ℤ	 is	…	 like	a	 (complete)	 curve;	but	
over	which	field?	In	particular,	one	would	dream	of	hav-
ing	an	object	like

Spec	ℤ ×Spec	𝔽1	Spec	ℤ,

since	Weil’s	proof	of	the	Riemann	hypothesis	for	a	curve	
over	a	finite	field	makes	use	of	the	product	of	two	copies	
of	this	curve.	(Soulé	1999,	1–2)

The	field	with	one	element	𝔽1,	then,	should	be	an	object	over	which	it	
makes	sense	to	view	Spec	ℤ	as	a	curve.

Using	𝔽1	to	prove	the	Riemann	Hypothesis	is	just	one	motivation	
for	 its	study.	Broadly	speaking,	 the	 idea	of	doing	geometry	with	the	
integers	 over	 𝔽1	 “emerged	 from	 certain	 heuristics	 in	 combinatorics,	
number	theory	and	homotopy	theory	that	could	not	be	explained	in	
the	framework	of	Grothendieck’s	scheme	theory”	(Lorscheid	2018,	83).	
Given	that	scheme	theory	has	served	as	the	foundation	for	algebraic	
geometry	 for	over	half	 a	 century,	a	 fully	 realized	 theory	of	 the	field	
with	one	element	would	necessitate	a	major	rethinking	of	a	large	body	
of	mathematics.

Although	we	still	 lack	a	definition	of	𝔽1	 that	seems	likely	to	yield	
a	proof	of	RH,	an	 impressive	 collection	of	mathematicians	have	un-
dertaken	extensive	exploratory	theory-building:	Jacques	Tits	(credited	
with	first	suggesting	𝔽1	in	Tits	(1957)),	Alain	Connes,	Caterina	Consani,	
Yuri	Manin,	and	Christophe	Soulé,	to	name	a	few	particularly	influen-
tial	contributors.	Thas	(2016)	and	Lorscheid	(2018)	are	a	recent	essay	
collection	and	a	survey	paper,	respectively.	Even	if	RH	remains	elusive,	

the	function	field	statement	back	to	the	original	p-adic	context,	thus	
proving	the	theorem.

A	final	way	in	which	the	function	field	model	has	advanced	number	
theory	is	by	motivating	research	around	the	notional	“field	with	one	
element”	𝔽1.	 In	 standard	algebra,	 a	field	with	one	element	 is	 impos-
sible,	because	fields,	by	definition,	have	an	additive	identity	0	and	a	
multiplicative	identity	1	such	that	0	≠	1.	So,	the	quest	for	𝔽1	can	be	seen	
as	an	exercise	in	conceptual	engineering;	the	task	is	to	build	a	coher-
ent	theory	in	which	an	𝔽1-like	object	exists	and	has	certain	desirable	
properties.20

Impetus	for	this	quest	comes	from	several	sources,	a	major	one	be-
ing	the	success	and	promise	of	the	function	field	model.	Work	on	𝔽1	is	
technical	and	describing	it	in	adequate	detail	would	be	unduly	lengthy,	
so	I	will	give	only	a	brief	sketch	here.

The	starting	point	 is	André	Weil’s	1948	proof	of	 the	Riemann	Hy-
pothesis	 for	 function	 fields	 (Weil	 1948).	As	Oliver	 Lorscheid	writes,	
“[t]he	analogies	between	number	fields	and	function	fields	led	to	the	
hope	that	one	can	mimic	these	methods	for	ℚ and	approach	the	[stan-
dard]	Riemann	hypothesis”	(Lorscheid	2018,	94).	(Here,	ℚ	denotes	the	
set	of	rational	numbers.)

Weil’s	proof	starts	with	a	“global”	function	field	F,	that	is,	a	finite	field	
extension	of	the	rational	function	field	𝔽p(t).	(See	footnote	17	for	more	
on	𝔽p(t).)	It	turns	out	that	F	can	be	interpreted	as	the	function	field	of	
a	curve	C	over	the	base	field	𝔽p.	One	can	then	define	a	zeta	function	
ζC	for	this	curve	and	use	the	tools	of	algebraic	geometry	to	prove	the	
analogue	of	the	Riemann	Hypothesis	for	ζC.	In	particular,	Weil’s	proof	
counts	the	number	of	intersection	points	of	C	with	a	“twisted”	version	
of	itself	inside	the	fiber	product	C × Spec𝔽p C.

21 
Many	 mathematicians	 have	 hoped,	 as	 per	 Lorscheid’s	 remarks	

above,	to	obtain	a	proof	of	the	standard	Riemann	Hypothesis	by	trans-
lating	Weil’s	proof	from	the	function	field	model	to	the	integers.	The	

20.	See	Tanswell	(2018)	for	discussion	of	conceptual	engineering	in	mathematics.

21.	 Spec	R,	the	spectrum	of	a	commutative	ring	R,	is	the	set	of	all	prime	ideals	of	
R,	often	equipped	with	the	Zariski	topology.
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In	addition,	the	metric	on	F[t]	is	non-Archimedean,	meaning	that	
the	familiar	triangle	inequality	d(x,z)	≤	d(x,y) + d(y,z)	takes	the	stron-
ger	“ultrametric”	form	d(x,z)	≤	max{d(x,y), d(y,z)}.	This	implies,	for	in-
stance,	that	all	triangles	in	F[t]n	are	isosceles,	that	every	point	on	the	
interior	of	a	ball	 is	 its	center,	and	that	for	any	two	intersecting	balls,	
one	is	contained	inside	the	other.	These	properties	are,	of	course,	very	
much	unlike	those	of	ℤn equipped	with	the	usual	metric.

Despite	 sharing	 some	 algebraic	 features,	 then,	 the	 function	field	
model	differs	from	the	integers	in	fundamental	ways.	As	with	the	Cra-
mér	model,	these	differences	go	beyond	mere	elisions	of	small	or	un-
important	details.	Nor	is	it	possible	to	recover	the	key	features	of	the	
integers	by	any	straightforward	process	of	de-idealization.	F[t]	 is	an	
unrealistic	model.

4. Morals: Understanding, Explanation, Counterfactuals

At	the	beginning	of	the	paper,	I	listed	three	pressing	questions	about	
unrealistic	scientific	models.	The	previous	sections	have	shown	that	
mathematicians	engage	in	modeling,	and	that	some	widely	used	mod-
els	in	pure	mathematics	are	unrealistic.	So,	these	cases	are	relevant	to	
the	questions	at	issue.	What	can	we	learn	from	them?

I	have	already	argued	that	the	Cramér	model	of	the	primes	and	the	
function	field	model	of	the	integers	are	sources	of	understanding.	So,	
the	first	of	the	three	questions	—	can	we	gain	genuine	understanding	
from	unrealistic	models?	—	has	an	affirmative	answer.

The	use	of	unrealistic	models	in	mathematics	has	gone	unappreci-
ated	by	philosophers,	and	cases	like	those	I	have	described	are	note-
worthy	 for	 that	 reason.	 But	 this	 answer	 is	 not	 otherwise	 surprising.	
Various	kinds	of	epistemically	salutary	unrealistic	models	have	been	
studied	extensively	in	recent	years,	and	the	mere	fact	of	their	existence	
no	longer	seems	especially	controversial.	See,	for	example,	Batterman	
and	Rice	(2014),	Bokulich	(2011),	de	Regt	(2015),	Hindriks	(2013),	Mäki	
(2009),	Morrison	(2015),	Rice	(2016),	and	the	papers	in	Synthese’s	re-
cent	collection	“What	to	Make	of	Highly	Unrealistic	Models”:	Boesch	

work	on	𝔽1	goes	on,	and	has	already	produced	a	richer	picture	of	the	
relationship	between	number	theory	and	geometry.

My	final	claims	in	this	section	will	come	as	no	surprise:	I	want	to	ar-
gue	that	mathematicians	have	gained	significant	understanding	from	
the	function	field	model	despite	its	unrealistic	character.	The	consider-
ations	from	the	last	section	apply	here	also	in	support	of	this	claim.	As	
with	the	Cramér	model,	the	experts	best	positioned	to	assess	the	mer-
its	of	the	function	field	model	describe	it	as	a	source	of	understanding.	
Here,	 for	 instance,	 is	Tao	(recall	 that	the	dyadic	models	are	a	 family	
that	 includes	 the	 function	field	model,	as	noted	at	 the	beginning	of	
this	section):

In	 some	areas	 [dyadic	 constructions]	 are	 an	oversimpli-
fied	and	overly	 easy	 toy	model;	 in	other	 areas	 they	get	
at	the	heart	of	the	matter	by	providing	a	model	in	which	
all	irrelevant	technicalities	are	stripped	away;	and	in	yet	
other	areas	they	are	a	crucial	component	in	the	analysis	
of	 the	 non-dyadic	 case.	 In	 all	 of	 these	 cases,	 though,	 it	
seems	that	the	contribution	that	dyadic	models	provide	
in	 helping	 us	 understand	 the	 non-dyadic	 world	 is	 im-
mense.	(Tao	2008,	68)

Finally,	the	function	field	model	is	an	unrealistic	representation	of	the	
integers.	Most	obviously	and	importantly,	there	is	no	natural	notion	of	
order	on	the	elements	of	F[t],	so	the	function	field	model	completely	
lacks	the	linear	structure	of	ℤ.	This	difference	has	far-reaching	conse-
quences.	For	instance,	mathematical	induction	does	not	make	sense	in	
F[t],	whereas	the	availability	of	induction	is	often	taken	to	be	a	charac-
teristic	property	of	the	whole	numbers.	(Cf.	Stewart	and	Tall’s	Founda-
tions of Mathematics:	“What	is	a	number?	…	The	first	step	[in	finding	
the	answer]	was	 to	 characterise	natural	numbers.	 It	 turned	out	 that	
their	most	important	defining	feature	wasn’t	counting,	or	arithmetic:	it	
was	the	possibility	of	proving	theorems	using	mathematical	induction”	
(Stewart	&	Tall	2015,	159).)
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Cramér’s	model	does	not	seem	to	fit	the	bill.	A	standard	idea	is	that	
explanations	 require	 dependence	 relations	 of	 some	 sort,	 either	 on-
tic	or	 counterfactual.	On	 the	 former	view,	an	explanans	must	 cause,	
ground,	or	otherwise	metaphysically	undergird	its	explanandum.	On	
the	latter	view,	what	is	required	is	counterfactual	dependence	—	if	the	
explanans	had	been	different,	the	explanandum	would	have	been	too.	
(For	defenses	of	these	two	views,	see,	for	example,	Ruben	(1990)	and	
Reutlinger	(2016),	respectively.)

The	distribution	of	the	prime	numbers	evidently	does	not	depend	
on	facts	about	the	Cramér	model	in	either	sense	of	“depend”.	Indeed,	
it	would	be	absurd	to	suggest	that	a	randomly	generated	subset	of	the	
natural	numbers	might	produce	or	give	rise	to	any	properties	of	the	ac-
tual	primes.	(We	regrettably	lack	a	well-developed	theory	of	the	meta-
physics	of	mathematical	objects,	but	this	ought	to	be	beyond	doubt	if	
anything	is.)

It	 is	 also	 highly	 implausible	 that	 the	 distribution	 of	 the	 primes	
counterfactually	depends	on	the	properties	of	the	model.	Again,	phi-
losophy	has	yet	 to	 reach	a	consensus	about	how	to	deal	with	math-
ematical	counterpossibles	(see	Baron	et	al.	(2020)	for	a	start).	But	the	
prevailing	idea,	following	the	Lewis–Stalnaker	semantics	for	ordinary	
counterfactuals,	is	to	somehow	identify	the	(impossible)	worlds	clos-
est	 to	actuality	where	the	antecedent	 is	 true	and	check	whether	 the	
consequent	also	holds	in	those	worlds.

In	the	case	at	issue,	we	are	supposed	to	imagine	that	the	Cramér	
model	is	different	in	some	way	—	say,	that	the	Goldbach	conjecture	is	
false	in	the	model,	 instead	of	true.	At	this	world,	some	even	natural	
number	greater	 than	2	 is	no	 longer	 the	 sum	of	 two	Cramér	primes.	
Is	 it	 also	 the	 case	here	 that	 some	even	n	 >	 2	 is	not	 the	 sum	of	 two	
ordinary	primes?	 I	 see	no	 reason	 to	 think	 so.	The	 closest	worlds	 at	
which	Goldbach	fails	in	the	Cramér	model	are	worlds	at	which	it	fails	
just	barely	—	say,	where	exactly	one	even	n	>	2	is	not	the	sum	of	two	
Cramér	primes.	And	the	fact	that	the	model	falsifies	Goldbach	by	the	
slimmest	 of	 margins	 seems	 to	 entail	 nothing	 at	 all	 about	 whether	
Goldbach	holds	in	ℕ.	To	whatever	extent	(if	any)	the	properties	of	the	

(2019),	Knuuttila	and	Koskinen	(2020),	Papayannopoulos	(2020),	and	
van	Eck	and	Wright	(2020).

The	remaining	questions,	though,	are	very	much	under	debate.	The	
mathematical	cases	I	have	described	can	help	to	resolve	both.

4.1 Explanation and Understanding
First:	 can	unrealistic	models	 explain,	 and	 is	 this	 how	 they	 generate	
understanding?	I	take	no	position	here	on	the	first	part	of	the	question,	
but	 the	answer	to	 the	second	part	 is	 “in	general,	no”.	Some	unrealis-
tic	models	help	us	to	understand	phenomena	for	which	they	offer	no	
explanation.

Cramér’s	model	is	a	case	in	point.	As	I	have	argued,	the	model	has	
improved	number	theorists’	understanding	of	the	distribution	of	the	
primes.	But	the	model	does	not	explain	this	distribution.	There	are	cir-
cumstantial,	theoretical,	and	commonsensical	reasons	to	believe	this.

The	circumstantial	reason	is	the	lack	of	evidence	from	mathemati-
cal	practice.	Mathematicians	are	often	quite	interested	in	the	explana-
tory	value	of	 theorems,	proofs,	heuristics,	 and	other	 tools,	 and	 they	
tend	to	make	their	positive	appraisals	known.22	This	is	especially	true	
of	widely	used	and	 frequently	discussed	pieces	of	mathematics	 like	
the	Cramér	model.	If	the	model	were	explanatory,	this	fact	would	be	
of	 interest	 to	 the	community	of	number	 theorists	who	have	studied,	
worked	with,	and	instructed	their	students	about	it	for	decades.	After	
consulting	what	must	be	a	large	percentage	of	the	published	literature	
on	the	model	(as	well	as	many	less	formal	online	discussions),	howev-
er,	I	have	encountered	no	such	appraisals,	either	explicit	or	oblique.23 
If	mathematicians	consider	the	Cramér	model	to	be	explanatory,	they	
have	 been	 uncharacteristically	 quiet	 about	 it	 for	 almost	 a	 hundred	
years.

The	theoretical	reason	is	 that,	 insofar	as	we	have	anything	 like	a	
general	understanding	of	explanation	(in	mathematics	or	elsewhere),	

22.	 For	overviews	of	 the	role	of	explanation	 in	mathematics,	see	D’Alessandro	
(2019)	or	Mancosu	(2018).

23.	 A	reasonably	large	sample	of	this	literature	is	cited	in	§2	above.
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from	 this	 theory	will	be	 far	 stronger	 candidates	 for	 inclusion	 in	 the	
explanatory	 store	 than	 any	 inferences	 associated	with	Cramér-style	
models.	 So,	 unificationism	provides	 no	 reason	 to	 judge	 the	models	
explanatory	either.

I	lack	space	to	review	other	accounts	of	explanation.	But	the	situ-
ation	 seems	much	 the	 same	on	any	plausible,	mathematically	appli-
cable	theory.25

There	is	perhaps	a	second	theoretical	reason	to	deny	that	the	Cra-
mér	model	is	explanatory.	As	noted	in	§2,	number	theorists	use	a	large	
family	of	random	models	to	study	the	distribution	of	the	primes,	Cra-
mér’s	being	the	original.	Many	of	these	models	make	incompatible	as-
sumptions.	Some	allow	infinitely	many	even	primes,	while	others	al-
low	none	besides	2.	Some	generate	the	surrogate	prime	sequence	by	a	
completely	different	random	procedure	than	Cramér’s.	And	so	on.	The	
models	in	this	menagerie	validate	many	of	the	same	basic	claims	(the	
Landau	conjectures	and	 the	Riemann	Hypothesis,	 for	 instance),	but	
they	have	little	else	in	common	apart	from	their	use	of	various	random	
methods.	Which	of	these	models	are	explanatory,	if	any	are?	Singling	
out	one	 in	particular	would	be	 indefensible:	no	 individual	model	 is	
uniquely	worthy	of	the	title.	But	declaring	that	all	are	explanatory	is	
equally	problematic.	Given	that	the	models	have	so	little	in	common,	
in	virtue	of	what	shared	feature	could	they	count	as	giving	the	same	
explanation?

Finally,	 there	 is	 a	 commonsensical	 reason	 to	 deny	 that	Cramér’s	
model	explains.	To	explain	a	phenomenon	is	to	give	a	reason	why	it	
occurs	or	obtains.	And	Cramér’s	model	does	not	do	this.	In	response	
to	the	question	“Why	is	it	the	case	that	Goldbach’s	conjecture	holds?”,	
for	instance,	one	would	not	accept	as	the	reason	“Because	it	holds	in	
random	models	of	 the	primes”.	This	 fact	 about	 the	model	might	be	
(and	probably	is)	a	good	reason	to	believe	that	Goldbach’s	conjecture	

25.	 An	account	that	it	might	seem	strange	not	to	mention	is	Marc	Lange’s	theory	
of	mathematical	explanation,	defended	in	Lange	(2014).	Lange’s	theory,	like	
Kitcher’s,	 is	 about	 explanatory	 proofs,	which	 the	models	 under	 discussion	
generally	do	not	provide.	I	find	it	even	less	clear	whether	or	how	Lange’s	view	
might	apply	to	model-based	inference.

natural	numbers	counterfactually	depend	on	the	properties	of	the	Cra-
mér	primes,	the	dependence	is	surely	not	so	extraordinarily	sensitive.

There	are,	of	course,	other	proposals	regarding	the	nature	of	expla-
nation.	A	final	one	worth	mentioning	is	Kitcher’s	unificationist	theory	
(1989),	which	was	explicitly	intended	to	apply	to	explanations	in	pure	
mathematics.	On	Kitcher’s	 approach,	 a	 proof	 counts	 as	 explanatory	
just	in	case	it	instantiates	an	argument	pattern	from	the	“explanatory	
store”,	that	is,	the	set	of	argument	patterns	that	most	efficiently	system-
atizes	our	knowledge	in	a	given	domain.	Kitcher	tends	to	argue	that	a	
given	proof	𝒫	is	explanatory	by	comparing	it	to	another	proof	of	the	
same	result	—	one	which	generalizes	less	readily	or	less	widely	than	𝒫 
or	which	is	more	mired	in	the	details	of	a	special	case	than	𝒫.	(See	§3.2	
of	Kitcher	(1989)	for	these	mathematical	examples.)

In	 a	 straightforward	 sense,	 the	models	 I	 have	 discussed	 are	 not	
even	potentially	explanatory	on	Kitcher’s	view,	because	 they	do	not	
usually	let	us	directly	prove	things	about	their	target	systems.	The	kind	
of	assurance	 they	provide	 is	heuristic	and	analogical	 rather	 than	de-
ductive.24	Even	setting	this	issue	aside,	the	model-based	approach	is	
often	decidedly	closer	to	the	purpose-built,	single-use	end	of	the	infer-
ential	spectrum	—	much	like	the	forms	of	reasoning	Kitcher	dismisses	
as	unexplanatory.

For	instance,	the	Cramér	model	is	good	at	providing	insights	about	
the	distribution	of	the	primes.	But	it	is	not	derived	from	any	grand	gen-
eral	theory,	and	it	suggests	no	unifying	perspective	that	is	expected	to	
help	with	other	kinds	of	problems.	By	contrast,	if	and	when	we	man-
age	to	prove	claims	like	the	Riemann	Hypothesis,	these	proofs	are	ex-
pected	to	flow	from	a	highly	fruitful	new	framework	with	consequenc-
es	 for	many	areas	of	mathematics.	The	 argument	patterns	obtained	
24.	While	Kitcher	is	a	self-avowed	“deductive	chauvinist”,	he	has	a	story	to	tell	

about	how	seemingly	statistical	or	probabilistic	explanations	can	be	accom-
modated	within	his	 framework	(see	Kitcher	1989,	448–459).	But	 inferences	
from	the	properties	of	models	to	the	expected	properties	of	their	target	sys-
tems	do	not	appear	to	be	statistical	or	probabilistic	arguments,	and	it	seems	
unlikely	that	Kitcher	would	consider	such	inferences	potentially	explanatory.	
(My	thanks	to	an	anonymous	referee	for	prompting	me	to	discuss	Kitcher’s	
view.)
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exactly	the	claim	that	I	deny:	“An	individual	has	scientific	understand-
ing	of	a	phenomenon	just	in	case	they	grasp	a	correct	scientific	expla-
nation	of	that	phenomenon”	(Strevens	2013,	510).

What	is	the	right	way	to	think	about	understanding	—	and,	in	par-
ticular,	the	sort	of	understanding	gained	from	unrealistic	models	—	if	
not	in	terms	of	explanation?	I	will	say	more	about	this	below.

4.2 Counterfactual Knowledge and Understanding
Second:	are	unrealistic	models	useful	primarily	because	they	 impart	
counterfactual	knowledge	about	their	target	systems?	Is	this	how	such	
models	contribute	to	understanding?	Again,	the	answer	is	“in	general,	
no”.	The	epistemic	benefits	gained	from	some	unrealistic	models	have	
little	to	do	with	counterfactual	knowledge.

Before	 I	 argue	against	 this	 view,	 I	want	 to	briefly	explain	why	 it	
has	seemed	plausible	 to	many	authors,	as	 it	may	not	be	as	 intuitive	
as	 the	purported	 link	between	explanation	and	understanding.	The	
Schelling	model	of	housing	segregation	mentioned	 in	§1	provides	a	
good	illustration.	The	model	represents	a	city	as	a	square	grid,	with	
each	grid	cell	depicting	a	housing	unit.	A	housing	unit	can	be	either	
empty	or	occupied	by	a	single	agent.	Agents	are	split	into	two	disjoint	
groups,	say	red	and	blue.	Each	agent	prefers	that	a	certain	ratio	R	of	
the	adjacent	occupied	squares	are	occupied	by	members	of	their	own	
group;	if	the	ratio	falls	below	R	at	any	time,	the	agent	will	then	move	to	
an	empty	unit	where	their	preferences	are	satisfied.	Schelling	showed	
that	 the	 red	 and	 blue	 populations	 eventually	 segregate	 themselves	
even	for	relatively	small	values	of	R	(roughly	R	≥	1/3	if	the	two	groups	
are	equally	sized).

It	is	obvious	that	the	Schelling	model	does	not	(and	is	not	meant	
to)	realistically	represent	the	factors	actually	responsible	for	segrega-
tion.	The	model	considers	only	one	variable	that	is	potentially	relevant	
to	housing	choice,	and	everything	about	its	treatment	of	that	variable	
is	highly	idealized.	Yet	the	Schelling	model	is	often	taken	to	have	im-
proved	our	understanding	of	segregation.	How	so?	Perhaps	by	impart-
ing	 counterfactual knowledge.	While	 the	model	 teaches	us	 little	about	

is	true,	but	it	does	not	tell	us	why	the	conjecture	is	true.	Someone	who	
knew	 the	 relevant	 facts	 about	 the	model	would	not	be	 confused	or	
misguided	for	continuing	to	seek	an	explanation	elsewhere.	Such,	at	
least,	is	my	intuition.

Many	of	 the	 same	points	 apply	 to	 the	 function	field	model,	 and	
indeed	we	have	further	evidence	from	mathematical	practice	 in	this	
case.	Here	is	Lorscheid:

For	 a	 not	 yet	 systematically	 understood	 reason,	 many	
arithmetic	 laws	 have	 (conjectural)	 analogues	 for	 func-
tion	fields	and	number	fields.	While	in	the	function	field	
case,	these	laws	often	have	a	conceptual	explanation	by	
means	of	a	geometric	interpretation,	methods	from	alge-
braic	geometry	break	down	in	the	number	field	case.	The	
mathematical	area	of	𝔽1-geometry	can	be	understood	as	a	
program	to	develop	a	geometric	language	that	allows	us	
to	transfer	the	geometric	methods	from	function	fields	to	
number	fields.	(Lorscheid	2014,	408–409)

Here,	Lorscheid	is	contrasting	the	situation	in	the	function	field	mod-
el	—	where	results	 like	the	Riemann	Hypothesis	are	not	only	known	
but	have	been	 successfully	 explained	via	 algebraic	geometry	—	with	
the	situation	 in	ordinary	number	 theory,	where	 these	results	are	be-
lieved	 to	hold	but	where	no	 corresponding	 explanation	 is	 yet	 avail-
able.	 Number	 theorists	 would	 like	 to	 find	 a	 geometric	 explanation	
for	the	Riemann	Hypothesis,	hence	their	interest	in	studying	the	field	
with	one	element.	But	Lorscheid	is	clear	that	the	function	field	model,	
at	least	as	it	currently	stands,	does	not	do	this	explanatory	work.	The	
model	helps	us	to	understand	features	of	the	natural	numbers	without	
explaining	those	features.

This	conclusion	is	significant	because	it	challenges	a	popular	view	
in	philosophy	of	science	according	to	which	understanding	requires	
(or	perhaps	just	is)	the	possession	of	an	explanation.	Defenses	of	such	
a	view	include	de	Regt	(2009),	Hannon	(2019),	Khalifa	(2012),	Strev-
ens	(2013),	and	Trout	(2007).	Strevens	provides	a	clear	statement	of	
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These	 are	 insights	 about	 the	 actual	 integers	 that	 contain	no	hint	 of	
counterfactual	content.

Let	me	be	clear	about	what	I	am	not	claiming	here.	First,	it	is	not	my	
view	 that	mathematical	 counterpossibles	are	 inherently	defective	 in	
some	way.	I	see	no	problem	with	admitting	that	some	such	statements	
are	meaningful	and	have	substantive	truth	conditions	—	for	example,	
“If	6	were	prime,	then	it	would	not	be	divisible	by	3”	seems	true,	where-
as	“If	6	were	prime,	then	it	would	not	be	divisible	by	1”	seems	false.	
Second,	it	is	not	my	view	that	counterpossibles	are	never	of	interest	to	
mathematicians.	Claims	like	“if	the	traveling	salesman	problem	were	
solvable	 in	polynomial	 time,	 then	 the	clique	problem	would	be	 too”	
are	common	and	perfectly	reasonable	(cf.	Jenny	2018).26	Third,	it	is	not	
my	view	that	the	function	field	model	yields	no	counterfactual	knowl-
edge	whatsoever.	One	can	infer	from	the	model,	say,	that	if	the	inte-
gers	had	well-behaved	derivatives,	then	the	abc	conjecture	would	be	
easy	to	prove.	But	this	sort	of	fact	is	just	an	uninteresting	instance	of	an	
obvious	general	principle:	for	any	two	things	A	and	B,	if	A	had	some	of	
B’s	properties,	then	some	B-ish	things	would	be	true	of	A.	Truths	of	this	
form	are	not	enlightening	unless	we	have	some	reason	to	care	about	
and	take	seriously	the	counterfactual	scenario	in	question.	And	we	do	
not	in	this	case:	mathematicians	simply	do	not	entertain	the	prospect	
of	the	integers	acquiring	the	properties	of	F[t].

In	 summary,	 then,	 I	 do	 not	 reject	 the	 intelligibility	 or	 potential	
usefulness	of	mathematical	counterpossibles	in	general.27	My	claim	is	
just	that	the	function	field	model	does	not	improve	understanding	by	
delivering	knowledge	of	this	sort.	Its	primary	epistemic	contributions	
take	the	form	of	information	about	the	integers’	actual	properties.

One	might	 think	 that	 this	 conclusion	 leaves	 us	with	 a	 puzzle.	 If	
unrealistic	models	 in	 science	 often	 seem	 to	 improve	understanding	
by	 conferring	 counterfactual	 knowledge	—	as	 is	 plausibly	 the	 case	
with	Schelling’s	model,	for	example	—	why	is	this	not	generally	true	of	

26.	These	are	counterfactuals	assuming	that	P	≠	NP.

27.	 For	 more	 on	 the	 uses	 of	 counterpossibles	 in	 science,	 see	 Tan	 (2019)	 and	
McLoone	(2020),	as	well	as	Jenny	(2018),	cited	above.

the	 causes	 of	 segregation	 in	 real	 cities,	 it	 plausibly	 does	 show	how	
things	would	(and	would	not)	change	if	the	world	were	different.	For	
instance,	one	might	infer	from	the	model	that	segregation	is	a	robust	
phenomenon,	likely	to	persist	even	in	the	absence	of	social	and	eco-
nomic	inequalities.	And	one	could	use	this	counterfactual	knowledge	
to	evaluate	proposed	interventions.	A	diversity	course	that	convinced	
people	 to	be	comfortable	 living	 in	at	 least	 50%	same-race	neighbor-
hoods,	for	example,	would	not	be	a	promising	remedy	for	segregation.

This	 looks	 like	 a	 reasonable	 diagnosis	 of	 the	 usefulness	 of	 the	
Schelling	model.	 Is	 it	 possible	 that	 all	 unrealistic	models	 serve	 our	
epistemic	purposes	in	the	same	way?	Many	philosophers	have	thought	
so.	On	this	view	—	defended,	for	instance,	in	Bokulich	(2011),	Grimm	
(2011),	Hindriks	(2013),	Lipton	(2009),	Rice	(2016),	Levy	(2020),	and	
Saatsi	(2020)	—	unrealistic	models	contribute	to	understanding	main-
ly	by	providing	us	with	counterfactual	knowledge	about	their	 target	
systems.	 Indeed,	 some	 of	 these	 authors	 identify	 understanding	 in	
general	with	counterfactual	knowledge.	Levy,	for	example,	writes	that	
“understanding	something	is	having	a	representation	of	it	that	allows	
one	to	draw	inferences	about	its	counterfactual	behavior	….[O]ne	un-
derstands	[a	target	phenomenon]	T	when	one	can	use	one’s	represen-
tation	of	T	to	say	what	would	happen	to	the	target	if	this	or	that	change	
were	made	to	it”	(Levy	2020,	281–2).

Unfortunately,	this	appealing	view	does	not	fit	the	facts.	The	func-
tion	 field	model	 of	 the	 integers,	 as	 we	 have	 seen,	 is	 an	 unrealistic	
model	 that	 confers	 understanding.	 But	 it	 does	 not	 do	 so	 by	 impart-
ing	counterfactual	knowledge.	When	number	theorists	work	with	the	
function	field	model,	they	are	not	seeking	information	about	a	scenar-
io	in	which	the	properties	of	the	integers	have	been	somehow	altered.	
Their	 interest	 is	 not	 in	what	mathematics	would	be	 like	 if	ℤ	 lacked	
its	linear	structure,	numbers	had	non-trivial	derivatives,	and	additive	
spillover	did	not	occur.	Rather,	what	they	seek	(and	have	gained)	is	
a	suite	of	evidence	and	heuristics	about	the	expected	properties	of	ℤ, 
ideas	about	how	the	relevant	claims	might	or	might	not	be	proved,	and	
clues	about	the	geometric	structure	undergirding	the	ℤ/F[t]	analogy.	
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improvement	to	a	variety	of	epistemic	states	(belief,	credence,	expec-
tation,	 attention,	 inquiry)	 and	 cognitive	 functions	 (reasoning,	 intu-
ition,	similarity-detection,	problem-solving).	Trying	to	single	out	any	
one	of	 these	contributions	as	necessary	or	sufficient	 for	understand-
ing	strikes	me	as	an	unpromising	project.	But	a	theory	that	takes	the	
whole	package	as	primary	ought	to	do	better.	I	think,	for	example,	that	
the	account	in	Kelp	(2015)	is	in	the	right	ballpark,	although	its	exclu-
sive	focus	on	knowledge	and	explanation/justification	relations	may	
be	a	weakness.	 I	 lack	 the	space	 to	 fully	engage	with	Kelp’s	or	other	
views	here,	however.

4.3 Mathematics as a Special Science
One	final	conclusion	suggested	by	this	discussion	concerns	the	rela-
tionship	between	pure	mathematics	and	philosophy	of	science.	This	
relationship	 is	 rather	 tenuous	at	present.	Even	 if	most	philosophers	
of	science	accept	some	sort	of	Quinean	continuity	thesis	in	principle,	
those	who	pay	 serious	 attention	 to	 the	 content	 and	practice	of	 con-
temporary	mathematics	are	a	rare	breed	in	practice.	Why	is	this?	Prob-
ably	at	least	in	part	because	few	philosophers	of	science	are	aware	of	
these	developments.	And	why	are	they	unaware?	Even	if	they	would	
hesitate	to	say	so,	I	suspect	that	a	widespread	sense	persists	that	pure	
mathematics	 and	empirical	 science	 are	 fundamentally	dissimilar	 en-
terprises	—	concerned	 with	 different	 goals,	 about	 different	 kinds	 of	
things,	and	using	different	methods	of	inquiry.	On	this	picture,	there	is	
just	not	much	reason	for	the	two	disciplines	to	intersect	(except,	every	
so	 often,	 in	 the	 context	 of	wondering	 about	 unreasonable	 effective-
ness	and	indispensability).

Perhaps	 this	 is	 beginning	 to	 change,	 ever	 so	 slightly.	 The	 recent	
surge	of	interest	in	non-causal	explanation	has	led	more	philosophers	
to	recognize	the	importance	of	explanation	in	pure	mathematics	and	
to	propose,	partly	on	the	basis	of	mathematical	examples,	theories	of	
explanation	 that	 apply	 to	 mathematics	 and	 empirical	 science	 alike	
(see,	for	example,	Lange	(2014)	and	Pincock	(2015a;	2015b)).

unrealistic	models	in	mathematics?	To	pose	the	question	another	way,	
why	have	philosophers	mistakenly	identified	one	possible	element	or	
symptom	of	understanding	with	a	general	rule	about	gaining	under-
standing	from	unrealistic	models?

One	reason,	 I	 think,	 is	 that	philosophers	of	science	 in	our	Wood-
wardian	 era	 have	 focused	 overmuch	 on	 control,	 manipulation,	 in-
terventions,	 and	 difference-makers	—	factors	 closely	 associated	with	
counterfactuals	 and	 often	 analyzed	 within	 a	 counterfactual	 frame-
work.	 These	 factors	 are	 important	 in	 empirical	 science	 and	 gaining	
knowledge	about	them	can	indeed	contribute	to	understanding.	But	
they	are	not	the	only	game	in	town.	Mathematicians,	for	instance,	care	
a	great	deal	about	understanding,	but	have	little	use	for	manipulation-
ist	machinery	(because	they	are	not	in	a	position	to	perform	interven-
tions	and	observe	the	results28).	Instead,	they	favor	models	that	offer	
other	kinds	of	goods	—	confirmation,	predictions,	heuristics,	analogies,	
proof	 ideas,	plausibility	checks,	and	hints	at	deeper	structure.	These	
sources	of	understanding	exist	in	empirical	science	too,	of	course.	And	
they	are	no	less	valuable	there,	even	if	philosophers	are	prone	to	ne-
glect	them.	So,	we	do	not	need	to	accept	a	disjunctive	picture,	accord-
ing	to	which	unrealistic	models	in	science	and	mathematics	contribute	
to	understanding	in	fundamentally	different	ways.	Rather,	they	do	so	
in	mostly	similar	ways,	except	that	counterfactual	knowledge	associ-
ated	with	control	and	manipulability	plays	a	larger	role	in	(some	parts	
of)	empirical	science.

Having	considered	and	rejected	two	accounts	of	model-based	un-
derstanding,	it	is	natural	to	ask	what	positive	picture	suggests	itself	in	
their	stead.	This	is	not	the	place	to	mount	a	defense	of	a	novel	theory	
(or	to	campaign	at	length	on	behalf	of	an	existing	one).	Broadly	speak-
ing,	however,	 accounts	 that	 link	understanding	 to	 cognitive	 system-
atization	 look	more	 promising	 than	 those	 that	 focus	 on	 possession	
of	a	specific	type	of	knowledge	or	ability.	The	understanding	gained	
from	unrealistic	models	often	has	the	character	of	a	broad-spectrum	

28.	And,	more	broadly,	of	course,	because	causal	reasoning	is	generally	inappli-
cable	in	pure	mathematics.
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of	some	sort	(Bokulich	2011;	Frigg	2010;	Salis	2021).	It	would	seem	to	
follow	from	such	views	that	the	polynomial	ring	F[t],	for	example,	is	
an	artifact	or	a	fiction.	But	F[t]	is	also	a	piece	of	ordinary	mathemat-
ics,	whose	ontological	status	is	presumably	the	same	as	that	of	other	
mathematical	 objects.	 Artifactualism	 about	models	 therefore	 seems	
to	imply	artifactualism	about	mathematics	in	general.	Depending	on	
one’s	metaphysical	commitments,	this	may	be	either	a	welcome	con-
sequence	or	a	damning	reductio	of	artifactualist	views.

Some	other	important	questions	are	broadly	epistemological.	For	
example,	there	is	a	tradition	of	viewing	(some)	model-based	inference	
as	a	kind	of	analogical	reasoning	(Bartha	2009;	Hesse	1963),	and	math-
ematical	 models	 may	 offer	 some	 unique	 data.	Mathematics	 should	
also	 join	 the	 conversation	 about	 thought	 experiments	 and	 imagina-
tion	in	science	(Brown	2010;	Murphy	2022)	and	the	relationship	be-
tween	these	activities	and	modeling	practices	(Arfini	2006).

These	 are	 just	 a	 few	 of	 the	ways	 in	which	 philosophy	 stands	 to	
benefit	from	taking	mathematics	seriously.	The	kingdom	will	prosper	
when	 the	 sequestered	queen	of	 the	 sciences	 is	allowed	 to	 return	 to	
court.29
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