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1. Introduction

In this project we reframe the belief aggregation problem as an evidence
combination problem. We explain that the focus on combining credences
alone, as is the case in prevailing approaches, ignores the individual
evidential states giving rise to those credences. As a result, traditional
approaches fail to capture the multitude of individual evidential states
which can lead to the same group credences. This occurs when we fail
to account for dependence among individuals and the resilience of their
beliefs. Such omissions are not innocuous: they can underdetermine
both the group belief and its updating strategy.

We present an approach that allows one to focus instead on appro-
priately combining evidence, and in particular taking into account any
overlaps in information. Once the evidence is properly captured, we
will show, a full group distribution can be uniquely established on its
basis. From this distribution, we can derive point estimates, intervals,
and predictions. We call this the evidence-first method, in part to distin-
guish our approach from prevailing rules for combining beliefs, which
may more accurately be described as credence-first.

To understand what we mean by this distinction – between combin-
ing evidence and combining credences – consider an example: Ahmed
has observed 100 coin tosses, 30 of which were heads. His estimate
that the next toss will land on heads is 0.3. Beatrice has observed 10

tosses, 3 of which were heads. Her estimate for heads on the next toss
is also 0.3. Ahmed and Beatrice have identical probability estimates
but very different information states, which we will characterize in
terms of Joyce (2005)’s notion of resilience. This is not a distinction
without a difference: which evidential state the probability is based on
can have a profound effect on how the group responds to and acts on
new information. In the above example, ordinary averaging suggests a
group belief of 0.3, but it does not say whether this belief corresponds
to 30/100 heads, 3/10 heads, or 33/110 heads. Each alternative would
lead to very different updating behavior. Matters become even more
complicated when some of the tosses that form the basis of Ahmed
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and Beatrice’s evidence were observed in common – i.e., when their
information is overlapping and their estimates are correlated – a situa-
tion that is ubiquitous in real life (Lindley, 1983). Thus, when we seek
to combine Ahmed and Beatrice’s beliefs we need to know, first, the
evidence they correspond to and, second, the extent of its overlap. The
prevailing approaches in the literature are not equipped with the tools
to answer these questions. The evidence-first method can answer them.

The paper proceeds as follows. In Section (2), we provide a brief
background and motivate the general project. In Section (3), we reframe
the belief aggregation problem. We explain that its usual formulation –
combining a list of credence functions into a group credence function –
is underspecified. Without capturing the size or weight of each mem-
ber’s evidence – i.e., the resilience of their credences – the group belief
fails to take into account the full texture of information available to its
members. In Section (4), we develop the evidence-first method. While
this gets a little bit technical, the basic idea is very simple and intuitive:
it is just a matter of properly accounting for everyone’s evidence – do
not leave anything out, do not overcount. Consider the Ahmed and
Beatrice example above. If they did not observe any tosses in common,
then the group’s evidence consists of 110 tosses, 33 of which were
heads. If they observed some tosses in common, we must appropri-
ately subtract these. We then explain how the evidence, together with
each person’s prior, fixes a unique group distribution that captures the
probabilities (valence), their resilience (weight or sharpness) and the
dependence among individuals (correlation). In Section (5), we provide
a fully worked example of our approach. And in Section (6), we explain
how this approach can be generalized to provide normative guidance
even in cases where we do not have full access to the individuals’
underlying evidence.

2. Background

We are interested in how beliefs from multiple individuals ought to
be combined to form a group belief. This problem can manifest in
several different ways. The first and most literal is when we inquire

into the opinions of a collective, taken as one agent (List and Pettit,
2011). This may occur when the collective is the subject of reactive
attitudes like praise or blame (Strawson, 1962). For example, Amnesty
International may blame Shell for human rights abuses in Nigeria
without necessarily singling out a corrupt set of individuals to bear
responsibility. A judge may decide that a corporation entered into a
contract even if no particular set of individuals explicitly thus intended.
Indeed, the legal notion of corporate personhood requires that we
impute agency to corporate entities. As Chief Justice Marshall states in
a well-known case before the US Supreme Court, “The great object of an
incorporation is to bestow the character and properties of individuality
on a collective and changing body.”1

The second is when an individual needs to combine multiple sources
of counsel or advice. For instance, Alibaba co-founder Lucy Peng is
deliberating whether to purchase a small but promising venture. She
solicits advice from three different domain experts on whether the
company will turn a profit in five years. After obtaining their estimates,
she must combine them into one prediction about profitability which
represents her own credence. And third is when a group must act. For
example, Tesla’s board of directors must decide whether to remove
its founder Elon Musk as the company’s CEO. Before they can make
a decision, they need to combine their individual beliefs about the
wisdom of doing so.

The prevailing rules in the aggregation scholarship use measures of
central tendency to identify a group’s belief. Moss (2011) and Pettigrew
(2019), for example, defend ordinary averaging whereas Russell et al.
(2015) and Dietrich (2019) champion geometric averaging. Dietrich
and List (2016) discuss the multiplicative rule, which is a special case
of the latter. We will explain how measures of central tendency can
arise naturally from considerations of evidential symmetry under our
approach. However, depending on the underlying evidential states,
our approach may or may not coincide with any form of averaging.

1. Providence Bank v. Billings, 29 U.S. 514 (1830).
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Meanwhile, Easwaran et al. (2016) use the product of odds ratios,
which is somewhat closer to our approach.2 Indeed, we will explain
that the rule they develop is equivalent to our method under special
circumstances (independent signals and a uniform prior).3

While the prevailing aggregation methods in Bayesian epistemology
largely focus on measures of central tendency, there are some views
closer to ours which can be found in the logic of belief revision litera-
ture. For example, Williamson (2019) argues that the group distribution
should be the distribution which maximizes Shannon information en-
tropy subject to the constraints imposed by the evidence of each of the
agents. Our approach is in the spirit of Williamson’s, as we too start
from the motivating idea that the content which should be combined is
the agents’ evidence.

However, Williamson does not explore situations of evidential over-
lap. In this project, those are the most interesting situations, and the
ones that we spend the most time developing. When evidential bases
are independent, aggregation is easier, and even the prevailing aver-
aging rules yield intuitive results. It is particularly in cases of overlap
where things get tricky, and our approach attempts to address them. In
that sense, one can think about our project as constructively building
on Williamson (2019)’s. However, we combine probability distributions
in a different way – we do not use maximum entropy methods. In that
sense, our project is doing something different, though in the same
spirit.

When we consider cases of evidential overlap, the aggregation prob-
lem becomes particularly interesting. Our approach requires that the

2. Kinney (2020) moves away from averaging and uses stacking, which is a
particular case of ensembles from machine learning. This is a different spirit
of aggregation, but it would be hard to apply in cases where there is not
much data or when, as often, the future is expected to be significantly
different from the past – i.e., where so-called concept drift occurs (Widmer
and Kubat, 1996).

3. Throughout this project, we use evidence, information, data, and signal
interchangeably. In the mathematical portions, it will be unambiguous what
the evidence is.

individuals in the group can share evidence with each other and deter-
mine which bits are overlapping and which bits are not. For example,
Williamson considers a case where we have two doctors making a prog-
nosis about a patient’s cancer, where one doctor has clinical evidence
and the other doctor has molecular evidence. This is a nice case for our
project as well, but it is arguably an easy case. Here the doctors can
share their evidence and there is no overlap. We can modify the example
so that there is some shareable overlapping evidence though. For exam-
ple, perhaps both doctors physically examined the patient (measuring
their temperature, blood pressure, etc.). Both the original example and
this modification are ideal use cases for our model, because here the
overlapping evidence can be easily identified. However, imagine a case
where a forecaster must combine two analysts’ predictions, without
knowledge of the underlying evidence that the predictions were based
on. In this case, we cannot aggregate evidence since we do not know
what it is or the extent to which it overlaps among the analysts’ who
made the predictions. We consider this situation in Section 6 of the
paper, and we explain that even though in such cases our model cannot
provide a recipe, so to speak, for combining credences, it can be used
as a normative benchmark for which combinations are reasonable and
which are not.

3. Group Credence is not Reducible to Valence

The argument in this section is straightforward. The prevailing combina-
tion rules – those which rely on one type of averaging or another – fail to
capture an important aspect of the aggregation problem’s information
structure: namely, the weight or mass of the group members’ credences,
which we call their resilience and define more carefully below.

Let X : F → R be a random variable defined on an underlying
σ-algebra (Ω,F , P). Let c(x) and C(x) be the individual and group
credence functions for X. Then ordinary and geometric averaging may
be defined as follows.
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Ordinary Averaging:

C(x) =
n

∑
i=1

wici(x).

Geometric Averaging:

C(x) =
n

∏
i=1

ci(x)wi .

Simple (ordinary/geometric) averaging is obtained from (ordi-
nary/geometric) averaging by setting all weights wi = 1/n. The so-
called multiplicative mean is obtained from the geometric mean by
setting wi = 1. Some authors also suggest normalizing the result, so
that the group credence is given by the above equations multiplied by
their normalizing factor. All of these rules share the following important
property:

Credence profile sufficiency. An individual’s list of probability
assignments, which Dietrich (2019) calls their credence profile, is
a sufficient statistic for summarizing their doxastic contribution
to the group’s belief.

For example, suppose we are interested in identifying a group’s proba-
bility that the next ball to be drawn from a certain urn will be white.4

The urn contains blue and white balls in unknown proportion. Credence
profile sufficiency says that what we need from every individual is a list

4. We use ball-and-urn examples throughout. While these are not the most
exciting, they are flexible, the evidence is unambiguous (i.e., observed balls)
and they allow us to neatly describe various group learning scenarios. In
Section (5), we use a more realistic example to illustrate our approach.

containing the probability that the next ball to be drawn is white, and
the probability that the next ball to be drawn is blue. Or, equivalently,
their point estimates of the proportion. For example, A’s list for (White,
Blue) might be (0.6, 0.4). We will argue that the credence profile is not
enough for identifying the group belief because there can be many
group credences that map back to the same credence profile depending
on the underlying members’ evidence. This becomes particularly clear
when the group undergoes a learning experience, in which case the
group update is often underdetermined as well.

Joyce (2005), following Skyrms (1980), distinguishes between the
valence, on the one hand, and resilience (mass or weight), on the other,
of a credence function. Valence, Joyce says, “is a matter of which way,
and how decisively, the relevant data points” (p. 159). Meanwhile, the
“size or weight of the evidence has to do with how much relevant
information the data contains, irrespective of which way it points” (p.
159). We refer to the latter as its resilience. And we refer to people with
more/less resilient credence functions as more/less resolute, for short.5

Just as a vector has a direction and a magnitude, so too does a
credence have a valence and a resilience. The valence refers to its
direction, as an estimate of a proposition’s truth value or an event’s
likelihood of occurring. A credence of 0.9 that it will rain has a strong
valence in favor of rain. By defining a group’s credence as a function of
the credence profile – i.e., the list of individual credence functions – the
prevailing approaches essentially combine individual valences into a
group valence. But in doing so they neglect weight or resilience. This
is an especially glaring omission when combining credences where we
want to pool every individual’s full contribution, which may vary from
person to person, depending on their level of expertise or background
information.

5. For Joyce, resilience is to be understood in terms of the extent to which a
person’s credences change under new data. But resilience is not a purely
diachronic concept – we will explain that it can be captured from a time-
slice centric perspective also, to borrow Moss (2015) and Hedden (2015)’s
expression.
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To characterize resilience, and harness it in support of a general
model for combining beliefs, as we do in Section (4), we first need to
develop a basic language for describing the magnitude of evidence
reflected by one’s credence function. This is a dimension of the person’s
doxastic state that is not captured by the credence profile. Accordingly,
we will describe below a natural Bayesian approach for modeling ex-
changeable data which will allow us to explain these ideas more clearly.
While the next two subsections may seem unduly technical, we spell
things out carefully because doing so will allow us to substantially
simplify the core material in Sections (4)-(6).

3.1 Characterizing Resilience
Suppose again we have two people, Ahmed and Beatrice. They will
each draw n balls from an urn with replacement. The urn contains
white and blue balls, with θ as the unknown proportion of white balls.
In a draw of n balls, let r be the number of white balls and, hence, n − r
the number of blue balls. Each person’s credences may be about θ, or
they may be about the probability that the next ball to be drawn will be
white or blue – i.e., predictions on X̃, where X̃ = 1 represents a white
ball and X̃ = 0 represents a blue ball.

Predicting the next ball and estimating θ both correspond to different
practical problems. For example, in the context of Covid-19, a doctor
might be interested in the probability that the next patient she sees is
positive (predicting the color of the next ball) whereas a policymaker
in her city may be more interested in the proportion of the population
that is positive (estimating θ). As long as one uses a proper scoring rule,
the Bayesian logic follows a similar structure for either task.

Accordingly, it is not enough to have a “credence” over the space of
outcomes because there are many different distributions for θ which
correspond to the same predictions about which ball will be drawn.
Thus, we first need to specify a full distribution for θ. Once we have
that, we can make point estimates, interval estimates, and predictions
about X̃.

In a draw of n balls from an urn that contains only white and blue
balls, the data are generated according to a Bernoulli process with the
following likelihood function:

f (r|θ, n) = θr(1 − θ)n−r. (1)

Now we need to identify prior beliefs regarding θ. In the Bayesian
approach, a good candidate prior for θ when data is generated according
to (1) is the so-called beta distribution, because it is a very flexible
distribution with two parameters, α ≥ 0 and β ≥ 0, accommodating a
wide variety of information states regarding a Bernoulli process and it
arises naturally in the context of modeling binary exchangeable data
(Lindley and Phillips, 1976). An early development of this model can be
found in Johnson (1924), It was later applied by Carnap (Carnap, 1950,
1952), in his construction of the continuum of inductive methods, and
by DeFinetti (De Finetti, 1937), in his refinement of Laplace’s Rule of
Succession.

Let π(θ) be the prior probability density for θ, where

π(θ) = f (θ|α, β) =
1

B(α, β)
θα−1(1 − θ)β−1 (2)

is a beta density function with B(α, β) = Γ(α)Γ(β)/Γ(α+ β) and Γ(n) =
(n − 1)!. The core of this distribution, its kernel, is given by θα−1(1 −
θ)β−1. The combinatorial term in front is a normalizing constant. The
mean of a beta distribution is given by E[θ] = α/(α + β). This will be
an important quantity in the material to follow, as will α and β. With
the likelihood in (1) and the prior in (2), the posterior density for θ is

π(θ|r, n) = f (θ|α + r, β + n − r) ∝ θα+r−1(1 − θ)β+n−r−1. (3)

The posterior distribution is of the same kernel form as the prior distri-
bution. This is because a beta distribution is conjugate to the Bernoulli

philosophers’ imprint - 5 - vol. 25, no. 14 (july 2025)



boris babic, anil gaba, ilia tsetlin, robert l. winkler Resolute and Correlated Bayesians

process. This means that if we start with a beta prior for θ, and update
via Bayes’ Rule with data from a Bernoulli process, our posterior will
likewise be beta but with updated parameters.

Such a model lends itself to a very intuitive interpretation.6 The
parameters of the updated beta distribution (the posterior distribution)
are given by the sum of α and the number of white balls, r, together
with the sum of β and the number of blue balls, n − r. As a result,
the parameters α and β can be interpreted as pseudo observations or
pseudo counts upon which the prior beliefs are based. For instance, to
say that one has a beta(2, 2) prior for the proportion θ of white balls in
the urn is equivalent to assuming that prior to making the actual draws,
that person observed two balls of each color.

Bayesian updating is very simple and intuitive within a beta-
Bernoulli model. If we start with a beta(7, 3) prior, and we observe
4 out of 10 white balls, our posterior for θ would be beta(7+4, 3+6). A
beta(1, 1) prior for θ is the uniform or flat prior. This would also be the
maximum entropy prior for a proportion.

If we want to formulate a credence about X̃ (the color of the next
ball to be drawn), we need the predictive distribution. Assuming that
the draws are conditionally independent given θ, this is given by:

P(X̃ = 1|r, n) =
∫ 1

0
P(X̃ = 1|θ)π(θ|r, n)dθ

= E[θ|r, n] =
α + r

α + β + n
.

(4)

Huttegger (2017a,b) refers to this expression as the Generalized Rule
of Succession and shows that this form of the predictive probability
follows from several modest assumptions about the structure of the data-

6. See also Babic et al. (2024) for a discussion of the beta Bernoulli model and
its interpretation.

generating process, in particular exchangeability, which will be satisfied
throughout. From a decision-theoretic perspective, the posterior mean
minimizes expected square error loss. The important point for us is
that when the problem is fully specified, each person will have a full
distribution about θ. They will then base their prediction on the mean
of that distribution.

We can now put this model to its first use and capture the notion
of resilience for a credence function. Suppose A starts with a beta(1,1)
prior and B starts with a beta(10, 10) prior regarding θ, the proportion
of white balls in the urn. They both obtain equivalent non overlapping
evidence: namely, each draws 10 balls, 6 of which are white. Using
(3), we can determine that their posteriors will become beta(7, 5) and
beta(16, 14), respectively. Using (4), we conclude that A’s probability
that the next ball to be drawn is white moves from 0.5 to 0.58 whereas
B’s moves from 0.5 to 0.53. B is much more resolute in her prior, even
though the actual credal value (the valence) is the same among them.
The resilience of a credence function for θ, therefore, corresponds to the
size of α and β.

Resilience. Let (α + β)A denote the size of the sum of α and β

in A’s beta distribution for θ. If (α + β)A > (α + β)B then A’s
distribution for θ is more resilient.

The higher (α + β) the more resolute the person will be about her
credences. Keep in mind that after we make observations, r contributes
to our new α, n − r contributes to our new β, and n contributes to
α + β. As a result, the preceding definition captures Joyce’s dictum that
resilience corresponds to the weight of one’s data – i.e., to n.

As the above example comparing a beta(1, 1) prior against a beta(10,
10) prior illustrates, it is possible to have equal valence and unequal
resilience. This is why the credence profile sufficiency assumption is
problematic. When we combine valences, there are many degrees of
resilience compatible with the ensuing group credence. Which level of
resilience we then impute to the group will later affect how it responds
to new evidence. As a result, credence is not reducible to valence.
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Without capturing resilience we fail to specify every individual’s full
quantification of uncertainty.

3.2 Synchronic Resilience
One might wonder whether the only way resilience reveals itself is
under learning experiences – diachronically, so to speak. This is not the
case. We can illustrate the difference between resolute and irresolute
agents synchronically as well.

The point estimate for θ, θ̂, is the same as the predictive probability
for a single draw, P(X̃ = 1). But instead of just producing the value
we think is most likely – which we know to be false anyway, since θ

is continuous – we can instead produce an interval estimate for θ. In
Bayesian inference, a (1 − γ)100% credible interval (a, b) satisfies:

P(a < θ < b|r, n) =
∫ b

a
π(θ|r, n)dθ = 1 − γ. (5)

Consider an example: A’s credences are beta(2, 2) whereas B’s cre-
dences are beta(100, 100). Both estimate the proportion of white balls
to be 0.5, and both estimate that the probability of the next ball being
white is 0.5. Their probabilities (valences) are identical, as are their
predictions about the next ball. However, A’s 95% credible interval
is (0.1, 0.9) whereas B’s 95% credible interval is (0.43, 0.57). This is a
dramatic difference in uncertainty around the prediction. A is very
open minded, whereas B is quite dogmatic.

Indeed, diachronic and synchronic resilience are related. As α and β

increase, the variance of the distribution, given here by σ2 = αβ/((α +

β)2(α + β + 1)), decreases. This is to be expected – intuitively, large n
implies that it is hard to change the distribution with extra information
(diachronic), while small σ2 implies that the current estimate is tight
(synchronic). So when we increase α and β we tighten the variance.
Therefore, for a given mean (point estimate) by increasing α and β we
ordinarily shrink the width of the credible interval. This is easiest to

illustrate if we approximate a beta prior with a normal distribution,7

where intervals are symmetric. In this case, a 95% credible interval
simplifies to µ ± 1.96σ, and in our example,

µ = α/(α + β), and
σ = (αβ/((α + β)2(α + β + 1)))1/2.

We can see that as α and β increase, then σ decreases and so for a given
µ, the length of the credible interval shrinks.

4. The Evidence-First Method

We now present the evidence-first method. In Section (4.1), we describe
the approach informally when there is no shared evidence. In Section
(4.2), we develop the idea mathematically for the general case where
evidence is overlapping. In Sections (4.3)-(4.4), we show that in the
special case with minimal overlapping evidence, we recover the ordinary
(weighted) averaging rule. And in the special case with a uniform prior
and no overlap, we recover the rule articulated in Easwaran et al. (2016),
which they call Upco (Section 4.5).

4.1 A Simple Example
Suppose we have an urn with blue and white balls in unknown propor-
tion θ, and two people, A and B, each of whom holds a uniform beta(1,
1) prior for θ. They each draw 10 balls, independently, and observe 4

and 7 white balls, respectively, with no overlap. What should the group
distribution be?

First, since both A and B approach the problem with a uniform prior,
the group prior before any observations are made should be uniform
as well.8 Second, and more importantly, we have to make explicit the

7. This approximation follows from the Central Limit Theorem and is reason-
ably accurate if α > 5 and β > 5.

8. We explain and argue for this in more detail in Section (4.2), below. For now
the exposition is informal to motivate the reader’s intuition.
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group’s shared evidence. We have 4+7=11 distinct white balls and 6+3=9

distinct blue balls, for a total of 20 balls. We can think of the group as
accomplishing a division of labor – assigning 10 draws for A to handle,
and 10 draws for B to handle. They each do their job and come back to
combine the evidence. The group distribution is therefore beta(12, 10).
This is a full distribution for the unknown proportion θ, from which we
can derive any statistic of interest. For instance, the group’s (posterior
mean) point estimate for θ is 12/22 = 0.54. The median is 0.55. The
95% credible interval is (0.34, 0.74). We now have a full representation
of the group’s uncertainty.

By contrast, if we combine credences through simple ordinary av-
eraging, for instance, we might pool the two point estimates from
A’s beta(5, 7) and B’s beta(8, 4) distribution, which would be (0.41 +

0.66)/2 = 0.53. But notice that on ordinary averaging approaches we
do not have the full distribution, using instead only the probabilities as
described by the credence profile. As a result, it would be impossible
to determine whether person A’s 0.41 estimate came from a beta(5, 7)
distribution, a beta(10, 14) distribution, a beta(20, 28) distribution, or
any other beta distribution which satisfies α/(α + β) = 0.41. Because
all of these distributions are compatible with the reported probability,
we also cannot say how the group should update if it makes additional
observations. For example, if its prior distribution is beta(5, 7) and it
observes 2 white balls it should move to beta(7,7) and a 0.5 estimate
of θ. But if its prior distribution is beta(20, 28) and it observes 2 white
balls then it should move to beta(22,28) and an estimate of 0.44 for θ.
Likewise, the 95% credible interval in the beta(5, 7) case is (0.17, 0.69)
whereas in the beta(20, 28) case it is (0.28, 0.55).

Further, it is well known that ordinary averaging is not commutative
with respect to updating: updating and combining does not always
give the same result as combining then updating.9 Our approach, by
comparison, does not have this problem, and we establish and discuss

9. Russell et al. (2015) (Fact 4), Dietrich (2019) (Theorem 2), and Pettigrew
(2019) (Theorem 3).

this for the general case in Theorem 1 below. Indeed, it is easy to see
that this will be true because we are simply summing up the number
of observations in each category. Since addition is commutative, so too
is the evidence-first method.

4.2 The Core Idea
The preceding examples are particularly easy to handle because each
person receives independent signals – no balls are observed together.
But it is rarely the case that a group of people approach a problem with
mutually exclusive private information. When some balls are observed
in common, the key is to capture overlapping evidence appropriately.10

This way, everyone contributes exactly their evidence, and only their
evidence, to the group belief. We now generalize the above idea and
mathematically formulate the evidence-first method. This model cap-
tures both dependence and resilience.

We use the case of two people and two categories for maximal
simplicity. Extending to n people and k categories is straightforward;
but since the number of parameters grows quickly, in both k and n,
it risks burying our message in the details. In a problem with two
categories (two colors of balls), for two people, we need to know six
quantities/parameters: the number of white balls each observed, the
number of blue balls each observed, and the number of each color of
balls observed in common.

Suppose we have two people, i = 1, 2, who will estimate the proba-
bility p that the next ball drawn from the urn will be white (label it as a
success). Each person has her own full subjective distribution over p,
which is a beta distribution with parameters ri and ni − ri:

πi(p) ∝ pri−1(1 − p)ni−ri−1. (6)

10. Clemen (1987) proposes a similar approach but we expand on this work
in several directions: by proving that the method is commutative under
updating, by explaining when it is equivalent to weighted averaging, and by
connecting it to likelihoodist approaches in philosophy.
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Thus, for person i, the probability that the next ball will be white
corresponds to Ei[p] =

ri
ni

. Moreover, ni captures the notion of resilience
described above – the larger ni, the more resolute person i is that the
probability is close to pi.

In order to combine these two people’s opinions/credences, we now
need to model their shared information structure – which must reflect
the way each came to their subjective probability distributions and any
overlap in their evidence. Our model is as follows: Every person starts
with a beta prior with parameters α0 and β0. Typically, these parameters
will be small, like 0 ≤ α0 ≤ 1 and 0 ≤ β0 ≤ 1. Such a prior is proper
(i.e., there exists a normalizing constant) if α0 > 0 and β0 > 0. This is
often, but not always, the case. We will consider some improper priors
below.

Each person will observe a few draws from this urn. This is their
evidence. More specifically, αc is the number of successes observed by
both people, βc is the number of failures observed by both people, αi

is the number of successes observed only by person i, and βi is the
number of failures observed only by person i. Now we can specify ri

and ni. In particular, ri = αi + αc + α0 and ni − ri = βi + βc + β0.
The group credence function, which we will denote by Π(p) (i.e.,

small π for the individual distribution, large Π for the group dis-
tribution), then corresponds to a situation when all of this informa-
tion is combined. Therefore, it is a beta distribution with parameters
r∗ = r1 + r2 − αc − α0 and n∗ − r∗ = (n1 − r1) + (n2 − r2)− βc − β0:

Π(p|r, n) ∝ pr∗−1(1 − p)n−r∗−1. (7)

This implies that the group probability is p∗ = r∗
n∗ and the new sample

size (resilience) of the group is equal to n∗. The group probability p∗

can be expressed (using ri = pini and n∗ = n1 + n2 − αc − α0 − βc − β0)
as

p∗ =
r∗

n∗ =
p1n1 + p2n2 − αc − α0

n1 + n2 − αc − α0 − βc − β0
. (8)

This final quantity, in (8), is what the group uses as its probabilistic
estimate. This is the reported probability – the valence. However, unlike
approaches which focus on deriving the probability alone, we derive the
full group distribution, (7), and the two are related because p∗ = E[p].
In sum, equations (6)-(8) describe the evidence-first method. We now
state a useful theorem about this method.

Theorem 1 (Update Commutativity). Let πi(p) be i’s prior distri-
bution for p, for i = 1, 2. Let Π(p) be the group prior, derived us-
ing (7). Let πi(p|r, n) be i’s posterior distribution for p, obtained
from πi(p) via Bayes’ Rule, after learning new information r and
n − r, and let Π(p|r, n) be the group posterior, obtained from
Π(p) via Bayes’ Rule, also after learning r and n − r. Finally,
with slight abuse of notation, let Π(p)|r, n be the group posterior
obtained if we first update πi(p) to πi(p|r, n) and then combine
πi(p|r, n) using (7). Then,

Π(p)|r, n = Π(p|r, n). (9)

Proof in the Appendix.

Thus, unlike ordinary averaging (weighted or simple) our approach is
update commutative. The proof of this theorem is straightforward. Any
distribution in our framework is simply characterized by the number
of successes and failures, with probability given by the proportion of
successes. So when we combine the distributions, we just count the
total number of successes and failures. The only wrinkle to keep in
mind is that we must avoid double counting trials that were observed
by both people. When we “combine and then update” we first count
the total number of successes and failures in the priors, and then add
new successes and failures. When we “update and then combine”, we
first count successes and failures for each agent, and then count the
total.

There is another aspect of the model worth flagging. We suppose
our individuals have a common diffuse/uniform prior, since we use
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α0 and β0 instead of αi
0 and βi

0. This assumption is not essential and
it can ultimately be dropped, but because some readers may find it
problematic, we explain this modeling choice. To understand why we
make this assumption, consider two different cases. First, suppose A
and B have no prior information, and they adopt a uniform distribution
on the basis of something like the Laplacean principle of indifference.11

That is, both are completely ignorant before making the relevant ob-
servations and their prior is a true flat ur-prior.12 Thus, α0 = 1 and
β0 = 1. Suppose we now want to combine these priors before updating
on any information. What should the group distribution be? Our model
implies that it should be beta(1, 1) and not beta(2, 2). This is intentional.
We do not want two truly ignorant individual priors to sum up to an
informative group prior. Another way to put this is that combining
ignorance with ignorance should not lead to wisdom or confidence, just
as 0 + 0 = 0.

Second, suppose A and B do have concrete prior information. For
example, A has previously drawn balls from an urn in a game of chance
at the Ringling Brothers circus whereas B has done so at the Barnum &
Bailey Circus. They now find themselves together at the Ramos Brothers
Circus, having to make predictions about an urn neither has previously
encountered. But they happen to know that all three circuses keep a
similar house edge so the proportions cannot vary too widely. Suppose
they start with beta(7, 3) and beta(3, 7) priors for the proportion of
white balls in the urn at the Ramos Brothers Circus. They then observe
4 draws, two of which are white and two of which are blue. What
should the group distribution be?

To answer this, we must make clear the sequence of updating. What
happened here is that both people updated on two sets of observa-
tions/ two experiments – first, independently, at the Ringling Brothers

11. Laplace (1814). For recent defenses, see White (2010) and Pettigrew (2019).
For the case of a proportion, the flat prior is also the maximum entropy prior
(Jaynes, 1957a,b).

12. By ur-prior, we refer to the stylized prior that an agent may hold before
observing any evidence whatsoever – the Lewisian superbaby (Hájek, ms).

/ Barnum & Bailey Circus, and second, at the Ramos Brothers Circus,
together. Thus, we need to determine what their ur-prior was before
both sets of observations. Suppose again it was beta(1, 1).13 This implies
that they each observed 8 balls at the first circus, which is why the sum
of α and β for both is 10 before the second circus.

Which approach they use to set their ur-prior does not matter as
long as there is a shared understanding of what rationality calls for in
the absence of information. Accordingly, our assumption is like a weak
version of the common prior familiar from microeconomic theory.14

It is “weak” in the sense that we do not assume rationality writ-large
requires universal agreement about ur-priors. We simply assume that
the members of the group agree in this regard. Importantly, however,
they can pick any starting point and our assumption that a uniform
prior corresponds to an ignorant or uninformative distribution is merely
illustrative.

Given this specification of the problem – beta(1, 1) ur-priors, followed
by (6,2) and (2,6) white/blue observations alone at the first circus,
followed by (2, 2) white/blue observations at the Ramos Brothers Circus
– the group posterior distribution becomes beta(11, 11). We subtract
only the initial α0 = β0 = 1 from the ur-prior and not the (6, 2) /
(2,6) observations made at the first circus, since these are ordinary
independent observations. If they started with beta(0, 0) ur-priors, the

13. The flat beta(1, 1) prior is merely illustrative, though Babic (2019) argues
it can be considered maximally safe under certain loss functions. It may
be instead that they adopted maximally ignorant beta(0, 0) distributions,
the so-called Haldane priors (Robert, 2007). Or perhaps due to symmetry
considerations, such as those articulated in Zabell (2005), they adopt the
invariant Jeffreys’ prior, which in this case corresponds to a beta(1/2, 1/2)
distribution (Jeffreys, 1946). Notice that all the above methods agree on
one thing: namely, that α0 and β0 are very small, and in all three cases
just a little bit of information leads to similar predictions. Our approach is
compatible with any assumption one wants to make about how to represent
true ignorance, as long as one is clear about that assumption so that we
know which part of their distribution is informed by the evidence, and
which part is informed by their prior commitments.

14. This assumption is most notably associated with Harsanyi (1987) and Au-
mann (1987).
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group posterior would be beta(12, 12). The message is that we must be
clear both about how the prior is selected before observations are made,
and about what evidence is available to each person, both individually
and jointly. In short, the only burden our framework imposes is that
when modeling common information, we have to be careful to model it
via αc and βc and not α0 and β0.15 To further illuminate our model, we
will look at several cases where (8) takes a simple form.

4.3 Limited Evidential Overlap
In our approach, the simple case where there is no evidential overlap
corresponds to what Dietrich and Spiekermann (2013) would describe
as a set of opinions which are common cause conditionally independent.
Let us examine this kind of situation. Suppose

αc + α0 + βc + β0

n1 + n2
≪ 1,

αc + α0

p1n1 + p2n2
≪ 1. (10)

This is the case if both people start with completely ignorant beta(0, 0)
priors and observe no information in common. That is, αc = α0 = βc =

15. In this sense, our weak common prior assumption might be described as a
local or group-level impermissivism about the requirements of rationality
with respect to an ur-prior. While one can find many defenses of both
objectivism in the selection of priors (e.g., Williamson (2010)) and uniqueness
at large (such as Greco and Hedden (2016)), we do not need to assume such
a strong position, as even the weak/local impermissivist assumption is
ultimately a modeling choice and may be relaxed.

β0 = 0. Then, from (8),

p∗ =
p1

n1
n1+n2

+ p2
n2

n1+n2
− αc+α0

n1+n2

1 − αc+α0+βc+β0
n1+n2

=

(
p1

n1

n1 + n2
+ p2

n2

n1 + n2

)(
1 − αc + α0

p1n1 + p2n2

)
(

1 − αc + α0 + βc + β0

n1 + n2

)−1

≈ p1
n1

n1 + n2
+ p2

n2

n1 + n2
.

(11)

In this case, we recover the ordinary weighted averaging rule, as
defended in Moss (2011) and (Pettigrew, 2019), among others, where the
weights are determined by n1 and n2, the total number of each person’s
observations – i.e., their resilience. This is intuitive, and indeed consis-
tent with Pettigrew (2019)’s defense of ordinary weighted averaging
because the more resolute of the two people will exert a greater weight
on the group credence function. As Pettigrew suggests, it appears rea-
sonable that the weights of an aggregation function reflect expertise – so
that more knowledgeable members exert more influence on the group’s
belief. It is also consistent with the interpretation given to the weights
in ordinary weighted averaging in Romeijn (2024). Romeijn interprets
the weights in terms of the truth conduciveness that one agent assigns
to the other, which can also be thought of in terms of the trust placed
in them.16 Accordingly, not only do we recover the ordinary weighted
averaging rule, but in doing so we also provide a principled reason for

16. Truth conduciveness, following its meaning in the Condorcet jury theorems,
implies that it is more probable that the person believes (i.e. ‘votes for’) a
proposition if it is true than if it is false. See Romeijn and Atkinson (2011).
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how to assign the weights in that rule: namely, by using them to encode
resilience.

4.4 Equal Resilience
Consider the case where n1 = n2 = n. Here things become even more
straightforward since if common information is small, then we will
combine individual credences by simple ordinary averaging:

p∗ =
p1 + p2

2
. (12)

This is intuitive. When resilience is equal, the weights in the ordinary
averaging rule ought to be equal. And it can be motivated on similar
grounds as above: if we have a group of equally knowledgeable agents,
it is reasonable to assign them equal weights.

But according to (8), the prior parameters (α0 and β0) and the num-
ber of successes and failures observed by both people (αc and βc) can
change this formula. From (8),

p∗ =
(p1 + p2) n − αc − α0

2n − αc − α0 − βc − β0
. (13)

Without loss of generality, suppose that p1 ≤ p2. Then 0 ≤ αc +

α0 ≤ p1n and 0 ≤ βc + β0 ≤ (1 − p2) n. The case where αc + α0 = 0,
βc + β0 = 0 corresponds to a situation where the body of common
evidence is small, and as a result, p∗ = p1+p2

2 , n∗ = 2n. But now
consider two further cases, where either αc + α0 or βc + β0 is at a
maximum or a minimum.

Case 1. αc + α0 = p1n, βc + β0 = 0. Then, by (13), p∗ = p2n
2n−p1n =

p2
2−p1

; n∗ = (2 − p1) n. So not only is the combined resilience now less
than 2n, but p∗ is different from the average of individual probabilities.
Even if p1 = p2 = p, the combined probability is still p∗ = p

2−p < p.
This is because in this case successes are observed by both people
together, while failures are observed by each person separately.

Case 2. αc + α0 = 0, βc + β0 = (1 − p2) n. Then, by (13), p∗ =
(p1+p2)n

2n−(1−p2)n
= p1+p2

1+p2
; n∗ = (1 + p2) n. As in the previous case, the com-

bined probability is again different from what simple averaging would
suggest.

4.5 A Closer Look at Priors
We now examine the impact of the prior distributions. Assume αc =

βc = 0 and α0 = β0 = d. Let pa =
p1+p2

2 , which would be the combined
probability under ordinary simple averaging. Then,

p∗ =
(p1 + p2) n − d

2n − 2d

=
p1+p2

2 − d
2n

1 − d
n

=
pa

(
1 − d

n

)
+ pa

d
n − d

2n

1 − d
n

= pa +

(
pa −

1
2

)
d
n

n
n − d

= pa +

(
pa −

1
2

)
d

n − d
.

(14)

This highlights an important feature of our model, which we call ex-
tremization (Lichtendahl et al., 2021). By extremization we refer to a
phenomenon that Easwaran et al. (2016) call synergy. It suggests that
the group belief can lie outside the interval formed by the lower and
upper bounds of individual beliefs. Examining the last line in (14), we
can see that p∗ extremizes away from 1

2 whenever the quantity on the
right side of the sum is not 0. That is, the group credence extremizes
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unless d = 0, or pa =
1
2 , or ri = 0 or ni − ri = 0. Meanwhile, adopting a

uniform prior in the above case would correspond to a situation where
d = 1, and for small n the extremization can be quite substantial. Note
also that extremization will occur even if p1 = p2 = pa.

Extremization is not possible under ordinary averaging rules, where
the group belief must lie in the convex hull of the set of individual
beliefs. But we agree with Easwaran et al. (2016) that extremizing can
be rational, especially in cases where, as here, the common evidence
is small. Consider a more realistic scenario. A company’s executive
committee is predicting whether the company will break even next
year. It consists of the heads of marketing, finance, and operations. All
three independently report that the company has a 97% probability
of breaking even. Given that each of these executives is coming from
a different area of the company, and is likely basing their forecast
on largely independent evidence, it is particularly plausible that the
group credence should be above 0.97. Indeed, if the credence remains
at 0.97, as ordinary averaging requires, we are likely throwing away
information (see also Christensen, 2011).

Finally, note that under a uniform prior, i.e., where α0 = β0 = d = 1,
the posterior distribution is proportional to the likelihood. Therefore, if
we combine two distributions, and we assume that each person started
with a uniform prior and received independent signals, i.e., αc = βc = 0,
then the combined posterior will be proportional to the product of their
individual distributions. In such a case, the individual distribution of
person i is beta with ri and ni − ri, and the combined distribution is
beta with r1 + r2 − 1 and n1 − r1 + n2 − r2 − 1, which is what we would
get if we multiply their individual distributions:

pr1−1(1 − p)n1−r1−1 pr2−1(1 − p)n2−r2−1

= pr1+r2−1−1(1 − p)n1−r1+n2−r2−1−1.
(15)

Therefore, with independent signals under uniform priors we recover

the so-called Upco rule from Easwaran et al. (2016) for updating on the
credences of others. Upco is derived as the product of odds ratios – for
one person, the odds ratio is p/(1 − p), for another it is q/(1 − q), so
the product is qp/[(1 − p)(1 − q)], and after normalization we obtain
Upco.

But, our method produces a combined distribution for p, and the
expected value of that distribution would be the probability for the
next ball drawn to be white. In Upco on the other hand (as defined on
Easwaran et al., 2016, pg. 3), the rule applies directly to the probabilities
of the next ball, which are not sensitive to considerations of resilience.
Thus our approach coincides with Upco only under uniform priors and
independent signals. For example, if r1 = r2 = 100 and n1 = n2 = 1000,
then our combined probability will still be around 10%; with Upco, if
we combine p = q = 10% we would get a group probability of about
1%.

5. A Worked Example: Hiring a Netflix Developer

To get a better feel for the evidence-first method, consider an extended
and more realistic example.

Netflix. Netflix is interested in hiring an original series devel-
oper. This will be a full-time employee whose job is to bring new
pitches, specs, etc., to the streaming service. The search commit-
tee consists of two members, Ahmed and Beatrice. The shortlist
of competing candidates are all individuals with significant prior
experience in developing shows. The committee considers a show
successful if it runs for one season or more and turns a profit.
Of interest, then, is the developer’s probability of creating a suc-
cessful show. They are now considering a well-known developer
named Jean Marscome.

Suppose A and B each report the following probabilities of JM’s success:
0.7 and 0.3, respectively. These are their naked probabilities – or valences
– and we now know that this is not enough to appropriately combine
their beliefs. Rather, we should elicit the members’ individual evidence
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on which these predictions are based and piece together their full
distributions, from which we then derive the group distribution and
make predictions about JM.

Thus we first need to know their priors for p. Suppose A and B
agree that in the absence of information one should apply the principle
of indifference and they both adopted a uniform prior. In fact, suppose
that this is standard Netflix company policy in the context of recruiting:
before any information on a candidate is obtained, the hiring committee
must treat the candidate’s probability of success as uniform on [0, 1].
This is not an unwise policy – it may be enforced to avoid favoritism
among job candidates.

Next, suppose they each lay their cards on the table. A is familiar
with 8 of JM’s shows, 6 of which were successful, and 2 of which were
unsuccessful. Meanwhile, B is also familiar with 8 of JM’s shows, but 2

of them were successful and 6 of them were unsuccessful. We can now
account for the resilience of their credences, because we have the weight
of their evidence. But we still need to untangle potential dependencies.

Finally, A and B list the JM shows they are familiar with, identifying
each as a success or failure. As part of this exercise, we learn that they
have 2 shows in common, both of which were a failure. We now know
all six parameters (α0, αi, αc, β0, βi, βc). From these, we can determine n
and r, compute the individual distributions, and predictions, and the
group distribution and prediction. Table (1) summarizes the above.

Ahmed Beatrice Group (Netflix)

α0 1 1 1
β0 1 1 1
αi 6 2 8
βi 0 4 4
αc 0 0 0
βc 2 2 2
n 8 8 8 + 8 − 2 = 14
r = α0 + αi + αc 1 + 6 + 0 = 7 1 + 2 + 0 = 3 1 + 8 + 0 = 9
n − r = β0 + βi + βc 1 + 0 + 2 = 3 1 + 4 + 2 = 7 1 + 4 + 2 = 7
Full distribution for p beta(7, 3) beta(3, 7) beta(9, 7)
Prediction of JM’s success, i.e., E[p] 7/10 = 0.7 3/10 = 0.3 9/16 = 0.5625

Table 1: Individual and group beliefs in Netflix example.

We highlight several points. First, the group prediction is not a
simple average of the individual predictions. It is tilted upward be-
cause there are overlapping failures and no overlapping successes.
By comparison, Russell et al. (2015) and Dietrich (2019)’s geometric
mean would produce a prediction of 0.46 without normalization, since
(0.7 × 0.3)1/2 = 0.46, putting more weight on Beatrice, and 0.5 with
normalization.

Notice, also, the effect of resilience. If after combining their beliefs
into a group distribution, they were to watch three of JM’s shows to-
gether, all of them a failure, they would update to a group distribution
of beta(9, 10) and the prediction of JM’s success would then drop from
0.56 to 0.47. Now suppose we double all the values in the original exam-
ple, so that the group belief is beta(18, 14) before they watch any shows
together. This time, again, they watch three shows, all failures, thereby
updating the group distribution to beta(18, 17). Now the prediction
drops from 0.56 to 0.51. Because such a group is more resolute in its
estimate of JM’s success, it responds less to 3 failures than it did in the
original case. This is a facet of the situation that the current approaches
in the literature are not equipped to handle.

philosophers’ imprint - 14 - vol. 25, no. 14 (july 2025)



boris babic, anil gaba, ilia tsetlin, robert l. winkler Resolute and Correlated Bayesians

Finally, our approach streamlines certain distinctions often made
in the aggregation literature. Dietrich (2019), for example, argues that
there are “different types of group Bayesianism, depending on the
kind of information on which one requires groups to conditionalize
[public, semi private, private]” (pg. 721). This tri-partite distinction is
a necessary byproduct of the assumption that the credence profile is
a sufficient summary statistic of individual beliefs. Our approach, by
comparison, does not require a multitude of Bayesianisms. There is
only one way to be Bayesian, namely, by passing whatever is learnt
through Bayes’ Rule. Public information consists of balls observed by
every member of the group. Semi private information consists of balls
observed by two or more but not all members of the group. Private
information consists of balls observed by only one member of the group.
To further drive the reader’s intuition, we include in Figure (1) a visual
representation of the Netflix situation. A

B

Figure 1: A and B’s combined credences about JM. The white balls
are successes and the blue balls are failures. The points inside the box
are the common uniform priors. The points outside the box but inside
the intersection constitute shared evidence. And the points outside the
intersection constitute each person’s individual evidence.

6. Scope and Applicability

One might wonder whether the range of aggregation problems within
the scope of our prescriptive approach is too limited. As in the Netflix
example, our framework may at first blush seem to call for conditions
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that are often unmet in real life: namely, the individuals in the group
should be able to have a conversation and reveal their total evidence.
But what about cases where individual credences do not arise from
such a clean and well-specified process?

While we think the requisite conditions are not as unattainable
as may first appear, it is nonetheless true that sometimes we cannot
so neatly disclose our evidence. Indeed there may be times where a
decision maker is faced with the unenviable task of combining bare indi-
vidual forecasts (which may have been compiled for them by someone
else, or made a long time ago, or by experts who are now inaccessible,
etc.). In short, one might suggest that the credence profile sufficiency
assumption, common in the literature, is not so much a desideratum of
the belief combination problem as it is a description of the hard reality
in which beliefs must be combined.17

Even in such cases, however, our approach remains valuable as a
normative benchmark for evaluating the rationality of group beliefs. To
understand how, suppose we really are in a situation where we have to
aggregate credences without access to the full evidence set, or perhaps
to any evidence at all. In such cases, we can apply the framework we
suggest in reverse. Instead of using this approach as a recipe for how to
reach a specific group distribution, we can instead identify a range of
permissible group credences which are consistent with our best estimate
about the plausible evidence histories of the individual members.

For example, suppose that in the case of drawing marbles from
urns, we have A and B’s predictions that the next marble will be
white. We also know that they observed some of the same draws, but
we are not sure how many they observed in common. Suppose that
we have no further information. In this situation, we have to make
some assumptions about their resiliences, and about the extent of
their evidential overlap. There are many evidence histories compatible
with their predictions. Accordingly, we can construct upper and lower
bounds on what the rationally permissible group prediction should be.

17. Thanks to Frederick Eberhardt for raising this consideration.

The normative guidance that our approach produces in this case is not
as specific as in the Netflix example, but that is to be expected since the
information structure is now far more impoverished.

To make this more precise, consider how we would make such
evaluative judgments without knowing the actual evidence histories.
First, we need to estimate individual resiliences, giving more weight to
sharper distributions. If we have no basis on which to estimate these,
we might start by assuming that everyone’s resiliences are the same
(for similar reasons that would motivate the Laplacean Principle of
Indifference). Next, we have to estimate the overlap in their evidence.
This will depend on our assessment of the number of evidence histories
consistent with the individual credences. But helpfully, our results from
Section (4) provide some general bounds on what is permissible.

If we go back to our Cases 1 and 2 (Section 4.4), we have there equal
resilience leading to simple averaging, such that p∗ = (p1 + p2)/2, but
only if common information is small. Thus we can now reconsider
extreme cases of overlap to see what happens. Assuming again without
loss of generality that p1 < p2, then in Case 1 αc is at a maximum and
by (13), p∗ = p2/(2 − p1). In Case 2, βc is at a maximum and by (13),
p∗ = (p1 + p2)/(1 + p2). This means that

p2

2 − p1
< p∗ <

p1 + p2

1 + p2
. (16)

To better understand this inequality, we plot these bounds on the group
credence p∗ in Figure (2), below. The plot depicts p∗ (z-axis) as a
function of p1 (x-axis) and p2 (y-axis). We can see that the bounds on
p∗ are very tight at the extremes, and widest near middling values.
This is to be expected because when the valences of the individuals’
predictions are near middling values then there are many possible
evidence histories consistent with the group’s credence – i.e., many
different ways the evidence could be overlapping among the group’s
members. In such cases, our approach is at its most permissible. It
allows the group belief to be anywhere between these wide bounds.
However, as the individual credences become sharper in their valence
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– i.e., closer to 0 or 1 – then our approach narrows down the range of
rationally permissible credences the group could adopt.

Figure 2: Plot depicting bounds on the group credence, p∗, as a function
of A and B’s credences, p1 and p2, respectively, depending on different
estimates about the degree of evidential overlap among the group’s
members. All axes range from 0 to 1.

We can further illuminate the normative constraints that our ap-
proach imposes by considering a few special cases of (16). Consider,
first, the case where the individuals’ credences are identical (p1 = p2).

Letting p1 = p2 = p, (16) reduces to,

p
2 − p

< p∗ <
2p

1 + p
. (17)

We can now plot these bounds as a two dimensional slice of the above
plot, as follows.

Figure 3: Plot depicting bounds on the group credence, p∗, as a function
of A and B’s credences, p, depending on different estimates about the
degree of evidential overlap among the group’s members.

Consider two further cases. When p1 = 0,

1
2

p2 < p∗ <
p2

1 + p2
. (18)
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And when p2 = 1,

1
2 − p1

< p∗ <
1 + p1

2
. (19)

By comparison, the simple average is p2/2 when p1 = 0 and (1+ p1)/2
when p2 = 1. Thus, simple averaging here corresponds to only one of
many compatible evidence histories.

Figure 4: Plot depicting bounds on the group credence, p∗, as a function
of A and B’s credences, p, depending on different estimates about the
degree of evidential overlap among the group’s members. In the left
panel, p1 = 0, corresponding to (18), and in the right panel, p2 = 1,
corresponding to (19).

The point, in short, is that there are two ways to make use of the
evidence-first method. The first is where the individuals are able to
share their total evidence with each other and discern the degree of
its overlap. In such cases, our approach offers essentially a step-by-
step recipe for getting to a full group distribution. The general idea
here is that we start from the notion that we should use all available
information, in the spirit of Good (1967), and we identify a systematic
approach to combining that information in a way that is particularly

sensitive to avoiding evidential overlap.18 Moreover, the aggregation
method we propose is maximally fine-grained, or informative, in the
sense that we identify the full distribution. Using that distribution, the
group can then pull out any statistic of interest – such as a mean, a
confidence interval, or any quantile.

The second is where the individuals do not know either what the evi-
dence is or the extent of its overlap (or both). In such cases, they can use
the individual predictions to construct upper and lower bounds on the
rationally permissible group credence. So even though in this case we
cannot tell the group where, precisely, to move to, we can tell the group
which credences to avoid. This is similar to how Joyce (1998), for exam-
ple, views the normative role of the accuracy-dominance framework.
In that framework, if an agent has incoherent credences, we cannot tell
her which coherent credences, precisely, she should adopt. But we can
tell her that there are many credences which accuracy-dominate her
own, and therefore that she should not remain where she is. Thus, our
approach serves as a normative guide in both cases. However, the more
information we have about the aggregation problem, the more firmly
are the standards of rationality delivered by the evidence-first method.

7. Concluding Remarks

We have presented a general and flexible evidence-driven framework
for combining beliefs. The method’s core virtues are that the group
belief is update commutative and reflects the full range of information
available to its individuals while simultaneously taking into account
any overlaps in their evidence. Beyond the technical virtues, our hope
is to encourage a general rethinking of the belief combination problem,
from a question of how to combine numerical credences, to a question
of how to identify and appropriately combine evidence.

18. This is particularly important because if the individual members of the
group are even slightly correlated, then the incremental value of additional
members (i.e., of additional information) fades away rather quickly. For
example, see Figure (1) of Clemen and Winkler (1985).
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Appendix

Theorem 1 (Update Commutativity). Let πi(p) be i’s prior distri-
bution for p, for i = 1, 2. Let Π(p) be the group prior, derived us-
ing (7). Let πi(p|r, n) be i’s posterior distribution for p, obtained
from πi(p) via Bayes’ Rule, after learning new information r and
n − r, and let Π(p|r, n) be the group posterior, obtained from
Π(p) via Bayes’ Rule, also after learning r and n − r. Finally,
with slight abuse of notation, let Π(p)|r, n be the group posterior
obtained if we first update πi(p) to πi(p|r, n) and then combine
πi(p|r, n) using (7). Then,

Π(p)|r, n = Π(p|r, n). (20)

Proof: Suppose, first, we update then combine. We know that each
person’s priors are given by:

π1(p) ∼ beta(α0, β0),
π2(p) ∼ beta(α0, β0).

Using Bayes’ Rule, we obtain the following individual posteriors:

π1(p|r, n) ∼ beta(α0 + α1 + αc, β0 + β1 + βc),
π2(p|r, n) ∼ beta(α0 + α2 + αc, β0 + β2 + βc).

where d is now expressed in terms of αi, αc, and βc. Combining these,
we get the following group distribution:

Π(p)|r, n ∼ beta(α1 + α2 + 2(αc + α0)− αc − α0, β1 + β2 + 2(βc + β0)− βc − β0)

= beta(α1 + α2 + αc + α0, β1 + β2 + βc + β0)

= beta(r∗, n∗ − r∗)

=
Γ(n∗)

Γ(r∗)Γ(n∗)
pr∗−1 (1 − p)n∗−r∗−1,

where Γ(n) = (n − 1)!.
Suppose, next, we first combine then update, as in Equation 7. We know
that each person’s priors are given by:

π1(p) ∼ beta(α0, β0),
π2(p) ∼ beta(α0, β0).

Combining these distributions, we obtain:

Π(p) ∼ beta(2α0 − α0, 2β0 − β0)

∼ beta(α0, β0).

If we now update this group distribution, we get the following group
posterior:

Π(p|r, n) ∼ beta(α0 + α1 + α2 + αc, β0 + β1 + β2 + βc).

Note that α0 + α1 + α2 + αc = r∗ and β0 + β1 + β2 + βc = n∗ − r∗.
Hence,

Π(p|r, n) ∼ beta(r∗, n∗ − r∗).

As a result,

Π(p|r, n) = Π(p)|r, n.

□
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