IPhilosophers’ ° VOLUME 25, NO. 8

mprmt

JEFFREY POOLING

Richard Pettigrew, Jonathan Weisberg

University of Bristol
University of Toronto

© 2025, The authors
This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 License

doi.org/10.3998/phimp.3806

Suppose you are 40% confident that Candidate X will win in the
upcoming election. Then you read a column projecting 80%. If you
and the columnist are equally well informed and competent on this
topic, how should you revise your opinion in light of theirs? Should
you perhaps split the difference, arriving at 60%?

Plenty has been written on this topic.” Much less studied, however, is
the question what comes next. Once you've updated your opinion about
Candidate X, how should your other opinions change to accommodate
this new view? For example, how should you revise your expectations
about other candidates running for other seats? Or your confidence that
your preferred party will win a majority?

A natural response is: by Jeffrey conditionalizing (Jeffrey, 1965).
When you change your probability for E from P(E) to P/(E) = x, Jeffrey
conditionalization adjusts your other opinions as follows:

P'(H)=P(H|E)-x+PH|E)-(1-x)J3

In our example, E is the proposition that Candidate X will win their
election, and H is any other proposition, e.g. that your party will win a
majority. If you split the difference with the columnist, then x = .6. So
you plug this number into Jeffrey’s equation and, together with your
existing opinions about H given E and given E, it determines your new
probability P'(H) that your party will win a majority.

Now suppose you read a different column, about another candidate
running for a different seat. In light of the opinion expressed there,
you update your confidence in the relevant proposition F to some new
probability P”(F) = y. Then you apply Jeffrey conditionalization again,

1. For some background see Christensen (2007, 2009), Elga (2007), Kelly (2010),
Dietrich and List (2016), and Easwaran et al. (2016).

2. See Wagner (2011) and Easwaran et al. (2016) for some prior discussion of
this proposal. See also Roussos (2021) for a related model.

3. That is, you retain your credences in H conditional on E and on E, and you
use your new unconditional credences in E and E, together with the Law of
Total Probability, to calculate your new credence in H.
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to update your opinions on other matters accordingly:
P"(H) = P'(H| F)-y+P'(H|F)-(1-y).

A natural thought now is that the order shouldn’t matter here. Which
column you read first is irrelevant. Either way, you have the same total
information in the end, so your ultimate opinions should be the same.

This requirement is known as commutativity, and we will show that
it strongly favours one particular way of merging your 40% with the
columnist’s 80%. Rather than splitting the difference to give 60%, you
should use another formula: “upco”, also known as “multiplicative
pooling.” Given some neutral assumptions, this is the only way of
combining probabilities that ensures Jeffrey conditionalization delivers
the same final result, no matter which opinion you encounter first. And
the difference between upco and difference-splitting can be striking:
upco combines 40% and 80% to give a new credence of about 73%,
rather than 60%.

But let’s first address the elephant in the room: why not simply
conditionalize? You've learned that the columnist is 80% confident X
will win, so shouldn’t you just conditionalize on the fact that they hold
that opinion? Well, you should, if you can. But the “just conditionalize”
answer still isn’t fully satisfactory, for two reasons.

First, it’s incomplete. After all, you may not have the prior credences,
conditional and unconditional, that conditionalizing requires.* Perhaps
you just haven’t given the columnist’s opinion and its evidential weight
much thought until now. Second, even if you have the relevant priors,
the computations needed to conditionalize can be very demanding,
especially if you are using Bayes” Theorem for a large partition. It’s
much easier to apply a simple formula like splitting the difference, and
then Jeffrey conditionalize on the result. Indeed, this corresponds to a

4. Bayesian writers often assume priors for all propositions an agent might
learn. But here we are addressing the part of the Bayesian tradition where
this assumption is relaxed; see e.g. Jeffrey (1983) and Easwaran et al (2016).
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natural and intuitive way to break the problem up into two pieces: (i)
how should I revise my opinion about Candidate X’s prospects, and (ii)
how should my other views change in light of the first change?

What’s more, this two step analysis is actually equivalent to con-
ditionalization in many cases. Suppose the columnist’s opinion about
Candidate X is only relevant to other matters insofar as it’s relevant
to whether X wins or not. More precisely, suppose that conditional on
X winning, other matters are independent of the columnist’s opinion
(and likewise conditional on X not winning). Then, revising all your
opinions by conditionalization is equivalent to the two step process
of first revising your opinion about E by conditionalization, and then
revising your remaining opinions by Jeffrey conditionalization.>

For multiple reasons then, we would like to know how your opinion
about Candidate X might be combined with the columnist’s, such
that the result can be sensibly plugged into Jeffrey conditionalization.
We’ll show that one way of performing this combination is uniquely
privileged.

5. Formally, if the partition {E, E} screens off H from E*, and we let x = P(E |
E*), then

P(H|E*)=P(H|E)-x+P(H|E)-(1—x).

To see why, first recall what it means for {E, E} to screen off H from E*:

Then apply the law of total probability to P(H | E*), and substitute x for
P(E| E*):

P(H | E) = P(H | EE*)P(E | E*) + P(H | EE*)P(E | EY)

=P(H|E)-x+P(H|E)-(1-x).
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1. Upco Ensures Jeffrey Pooling Commutes

Splitting the difference between two opinions is known as linear pooling.
The formula is just the familiar arithmetic mean:

where P(E) is your prior opinion about E, before reading any columns,
and Q(E) is the columnist’s probability. In our example P(E) = 0.4 and
Q(E) =0.8,s0 P'(E) = 0.6.

But we'll see that commutativity instead favours upco, also known
as multiplicative pooling:

P(E)Q(E) + P(E)Q(E)’

If P(E) = 0.4 and Q(E) = 0.8, then P'(E) = 0.73, significantly larger
than the 0.6 recommended by linear pooling.
These two formulas are examples of pooling rules, functions that take

two probabilities P(E) and Q(E) and return a new probability P/ (E).

Two more examples come from the other notions of ‘mean’ included in
the classical trio of Pythagorean means: the geometric and harmonic
means (Genest and Zidek, 1986). And there are many more, too many
to name.

Our question is how these various rules behave when coupled with
Jeffrey conditionalization. Suppose we begin with P, fix some pooling
rule f, and use the following two-step procedure for responding to Q’s
opinion about E.

Jeffrey Pooling:

Step 1. Apply pooling rule f to P(E) and Q(E) to obtain P’'(E):
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Step 2. Revise all other credences by Jeffrey conditionalization:
P'(H)=P(H|E)P'(E)+P(H | E) (1—- P'(E)).

We will call this Jeffrey pooling P with Q on E using f. But that’s a
mouthful, so we’ll often leave some of these parameters implicit when
context permits. We'll say that f ensures Jeffrey pooling commutes if, for
any P, Q, and R, Jeffrey pooling P with Q on E and then Jeffrey pooling
the result with R on F, has the same final result as Jeffrey pooling P
with R on F and then Jeffrey pooling the result with Q on E.

Upco ensures that Jeffrey pooling commutes, as long as the necessary
operations are defined. Zeros can gum up the works in two ways.
First, if P(E) = 1 and Q(E) = 0 or vice versa, then Step 1 fails: upco
cannot be applied, because its denominator is 0. Second, the conditional
probabilities used in Step 2 need to be defined, so P(E) cannot be
either 0 or 1. For a subsequent update on F to have defined conditional
probabilities as well, we also need the updated probability of F to be
non-extreme.

To avoid these difficulties, we will temporarily make the simplifying
assumption that P is reqular, i.e. that it assigns positive probability to EF,
EF, EF, and EF. This ensures no problematic zeros arise when Jeffrey
pooling on E and then F, or vice versa. In the Appendix we show that
this assumption can be dropped; the result we are about to present
holds whenever the relevant Jeffrey pooling operations are defined,
even if P is not regular.

If P is regular, then upco is sufficient to make Jeffrey pooling com-
mutative. We attribute this result to Field (1978) for reasons that will
become clear in Section 3.

Theorem 1 (Field). Upco ensures that Jeffrey pooling commutes for any
regular P, and any Q and R.

In the Appendix we generalize this result to pooling over countable
partitions, i.e. to cases where we don’t just hear Q’s opinion about E,
but about every element in a countable partition.
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An example makes clear why Theorem 1 is true. Recall the case
we opened with, where P(E) = 4/10 and Q(E) = 8/10. Let’s further
suppose that R(F) = 6/10, and that P has the following details:

| EFEF EF EF
P(—) | 3/10 1/10 2/10 4/10

According to Theorem 1, P’s final opinions will be the same whether
they Jeffrey pool with Q first and R second, or vice versa, provided they
use upco for the first step in Jeffrey pooling.

Begin with the case where P pools with Q first. Step 1 of Jeffrey
pooling combines P(E) = 4/10 with Q(E) = 8/10 via upco, to yield
P'(E) = 8/11. For Step 2, the key is to observe that the relative pro-
portions of EF and EF must be preserved—this is Jeffrey condition-
alization’s oft-noted “rigidity”. So the 8/11 assigned to E must be
divided 3-to-1 between EF and EF. Similarly, the 3/11 assigned to E
gets divided 1-to-2 between EF and EF. The posterior P’ that results is:

| EF EF EF EF
P'(-) | 6/11 2/11 1/11 2/11

Now we pool P’ with R using similar reasoning. Applying upco to
P'(F) =7/11 and R(F) = 6/10 gives P"(F) = 21/29. Jeffrey condition-
alization then divides this up proportionally to arrive at:

| EF EF EF EF
P'(—) | 18/29 4/29 3/29 4/29

In the case where P pools with R first and Q second, parallel calculations
give the following sequence instead:
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\ EF EF EF EF
9/25 2/25 6/25 8/25
18/29 4/29 3/29 4/29

P()
P(-)

As Theorem 1 claimed, the ultimate posterior P” is the same either way.
This convergence may seem magical, but its inevitability emerges if
we look past the denominators to the relative proportions. We began
with the proportions 3:1:2: 4. Then we multiplied the first two entries
by 8 and the last two by 2, since Q(E) = 8/10 and Q(E) = 2/10. This
gave us for P’ the relative proportions 24 : 8:4: 8, although we divided
through by the common factor 4 to write this as 6:2:1:2. Then, because
R(F) = 6/10 and R(F) = 4/10, we multiplied the first and third entries
by 6 and the second and fourth by 4, to get 36 : 8 : 6 : 8—although again
we divided through by a common factor to write this as 18:4:3:4.

Updating in the the opposite order, we began again with 3:1:2:4
but multiplied the first and third entries by 6, the second and fourth by
4, to get 18:4:12:16, which reduced to 9:2:6: 8. Then we multiplied
the first two entries by 8 and the last two by 2, to get 72:16:12: 16, or
18:4:3:4.

In both cases the final proportions had to be the same because,
ultimately, all we did was multiply the values 3, 1, 2, and 4 by the
values 8-6,8-4,2-6,and 2 - 4, respectively (then divide the results by
a common factor). We can think of this as multiplying by the values 8,
8, 2, 2 first, and by 6, 4, 6, 4 second, or the other way around. The com-
mutativity of Jeffrey pooling with upco follows by the commutativity
of multiplication.

2. Only Upco Ensures Jeffrey Pooling Commutes

While upco ensures that Jeffrey pooling commutes, linear pooling
doesn’t; nor do geometric and harmonic pooling. Indeed, among the
pooling rules that boast four plausible properties—properties the rules
just named all share—upco is the only one that ensures this. As we will
indicate in the course of introducing these properties, we don’t think
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they will be desirable in all situations. But we do claim that they are
desirable in a great many important ones. And in those cases, upco is
the only rule that delivers.

The first property is monotonicity: if we fix Q(E) = 1/2, then as P(E)
increases, so does P’'(E). This is a familiar feature of linear pooling, and
upco has it too.® Notice that this is also a feature of conditionalization
in many cases. For any proposition Q, conditionalization sets P'(E) =
P(E | Q), which Bayes’ theorem renders

P'(E)

If the likelihood terms P(Q | E) and P(Q | E) stay fixed as P(E)
changes, then P'(E) increases with P(E).7

The second property our argument will rely on is uniformity preser-
vation: if P(E) = Q(E) = 1/2, then P'(E) = 1/2 too. Crudely put,
two empty heads are no better than one. A bit less crudely, if neither
party has an opinion about the question at hand, then combining their
opinions doesn’t change this. There are conceivable cases where this
feature would be undesirable. For example, the fact that both parties
are so far ignorant about a question could indicate a conspiracy to keep
everyone in the dark. But such cases are the exception rather than the
rule.

Third is continuity: in nearly all cases, if we fix Q(E) and let P(E)
approach a value ¢, then the pool of ¢ and Q(E) should be the limit
of the pools of P(E) and Q(E) as P(E) approaches c. Nearly all? Yes,
because we have to ensure that all of the pools just mentioned are
defined. So we restrict to cases in which, as P(E) approaches c, the pool

6. In fact this property holds for any fixed value of Q(E) other than 0 and 1.
But we only need the minimal assumption that it holds for Q(E) = 1/2.

7. The derivative with respect to p of (pg1)/(pg1 + (1 — p)g2) is positive if
g1,92 > 0.
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of P(E) and Q(E) is always defined, and the pool of ¢ and Q(E) is as
well.

To illustrate continuity, fix Q(E) = 1/2 and consider what happens
in linear pooling as P(E) decreases to 0. As P(E) gets smaller, the value
of P'(E) gets closer and closer to 1/4. And, indeed, that is the value
P'(E) takes when P(E) finally does reach 0. There is no sudden jump
in the value of P'(E) when P(E) finally hits 0.

As with uniformity preservation, there are conceivable cases where
this feature would not be appropriate. These might arise if we were
to think that some probabilities have a particular significance. For
instance, a Lockean might think there is a probabilistic threshold beyond
which you count as believing the proposition to which you assign the
probability, but below which you don’t. And they might think that
sudden change in doxastic status should be reflected in our pooling
rule—perhaps your probability gains more weight when it suddenly
becomes a belief. We'll assume this isn’t the case.

Our fourth property is symmetry: swapping the values of P(E) and
Q(E) makes no difference to P'(E). This is perhaps the most restrictive
feature, since exceptions are commonplace. When one party is more
competent or better informed than the other, it matters who holds
which opinion. Frequently we will want to give more “weight” to P(E)
than to Q(E), or vice versa, in which case exchanging their values should
make a difference.

But our argument only concerns cases where this is not so: cases
where the two parties are equally competent and well informed on the
topic.2 When e.g. one party has more information, upco may not be
appropriate (although in some cases it will be appropriate even then).

There are asymmetrically weighted versions of the various pooling
rules we’ve mentioned, which may be appropriate to such cases. But
we won't address these cases here. If we can show that upco is specially

8. See Elga (2007) for a defense of the idea that the views of peers should
be given “equal weight”. See Fitelson and Jehle (2009) for some formal
background on articulating the view.
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suited when symmetry is appropriate, that will be a significant step
forward. Not to mention a strong indicator that a weighted version of
upco would be the way to go in some asymmetric cases.

Finally, there’s an assumption implicit in the very idea of a pooling
rule, which we should pause to examine. Since a pooling rule is a
function of P(E) and Q(E) and nothing else, we are assuming from the
outset that P(E) and Q(E) are the only factors relevant to P’(E). But
other of P’s opinions could be relevant, such as their opinion about
what evidence Q(E) is based on. Even the fact that it’s an opinion about
the proposition E, and not some other proposition, could be relevant.
Someone might be competent on the topic of E but incompetent on the
topic of F. In which case you might apply one formula when faced with
their opinion about E, but use another should they opine about F.

So there is a tacit fifth assumption here, which we might call exten-
sionality. By assuming extensionality, however, we are not assuming that
there is one pooling rule appropriate to all circumstances, regardless of
your background beliefs or the content of the question under discussion.
On the contrary, different rules will be suited to different circumstances.
But the question we are asking is: which rules are suited to circum-
stances where the above four conditions hold, Jeffrey conditionalization
is appropriate, and the order in which sources are consulted should not
matter.

In answer to this question, we offer the following result.

Theorem 2. Among the monotonic, continuous, uniformity preserving, and
symmetric pooling rules, only upco ensures that Jeffrey pooling commutes for
any regular P, and any Q and R.

As we noted in connection with Theorem 1, upco ensures Jeffrey pooling
commutes even when P is not regular, provided the relevant operations
are defined. But Theorem 2 tells us no other pooling rule can claim this
feature, even if we restrict our attention to regular P.

It’s important to appreciate what this result does not say: it does
not tell us that rules like linear pooling never commute. It is possible
to get lucky with linear pooling and encounter two sources where the
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order doesn’t matter. For example, suppose Q already agrees with P
about E, and R agrees with P about F. Then, linear pooling will keep
P’s opinion fixed throughout. Whichever order they encounter Q and
R in, their opinion at the end will be the same as when they started.
But Theorem 2 tells us this can’t be counted on to hold generally; only
upco is commutative regardless of the particulars of P, Q, and R.

It’s also important to recognize that there are cases where the order
should matter. For example, imagine you're interviewing pundits instead
of reading pre-written opinion columns. And pundit Q can be counted
on for a serious opinion if you consult them first, but they’ll be so
insulted if you talk to R first that they’ll lose their cool and adopt wild
views. Then it really matters what order you hear their opinions in.

But again, we do not mean to argue that upco is always the best rule.
Rather, we aim to show that upco is the only rule that will serve in all
cases where the assumptions we’ve laid out are reasonable. And one of
those assumptions is that the order shouldn’t matter.

That completes our argument for upco. We now turn to locating
Theorems 1 and 2 in the context of existing work on Jeffrey condition-
alization and commutativity. In Section 3, we show a surprising and
illuminating connection with an early result due to Field (1978). Then,
in Section 4, we explain how Wagner’s (2002) theorems relate.

3. Testimony of the Senses

Field (1978) was the first to identify conditions that make Jeffrey condi-
tionalization commutative. How does his discovery fit with our results,
especially Theorem 1?

Field discusses cases where sensory experience, rather than another
person’s opinion, prompts the shift from P(E) to P'(E). He assumes
that each experience has an associated proposition E and number 8 > 0,
where B reflects how strongly the experience speaks in favour of E.?

9. Field actually uses a log scaled version of B, which he labels a. He then
reformulates Jeffrey conditionalization using exponentials, to invert the logs.
We’ve removed these scaling features to make the connection with upco
more transparent.
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Field’s proposal is that we should respond to sense experience by
the following two-step procedure.

Field Updating;:

Step 1. Update from P(E) to P'(E) using  as follows:

ooy B-P(E)
PE) = B-P(E)+ P(E)’

Step 2. Update other credences by Jeffrey conditionalization:
P'(H)=P(H|E)P'(E)+P(H | E) (1— P'(E)).

We will call this procedure Field updating on (E, B). Field shows that his
procedure is commutative: Field updating on (E, f1) and then (F, )
has the same result as Field updating on (F, B;) followed by (E, B1).
This may sound familiar. And if you squint, you might see that
Field’s Equation (2) is actually the same as upco’s Equation (1). It's
just that § is on the odds scale from 0 to oo, rather than the probability
scale from 0 to 1. To convert from odds to probabilities, we can divide
through by 8 + 1, in both the numerator and the denominator:

gi1 P(E)
P'(E) = - 3)
gt - P(E) + 51 - P(E)

And this is the same as Equation (1), where Q’s probabilities are Q(E) =
B/(B+1) and Q(E) = 1/(B+1).

So, formally speaking, Field updating is the same thing as Jeffrey
pooling with upco. And Theorem 1 is just a restatement of Field’s classic
result.
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This formal parallel suggests two helpful heuristics for thinking
about Field’s way of responding to sensory experience.

First, we might think of Equation (3) as pooling your prior opinion
with a “naive” opinion proposed by your sensory system. Notice that,
when P(E) = P(E), Equation (3) delivers P’'(E) = B/(B +1). So if you
have no prior opinion about E, you will defer to your sensory system’s
proposal, /(B + 1). We can thus think of 8 as the odds your sensory
system recommends based on the experience alone, absent any prior
information.

However, when you do have a prior opinion about E, the naive
recommendation has to be merged with it. Field’s proposal is to use
upco to combine the naive recommendation with your prior opinion,
which makes updates commutative under Jeffrey conditionalization.
Indeed, Theorem 2 shows that Field’s proposal is the only way to do this
using a monotonic, continuous, uniformity preserving, and symmetric
pooling rule.

A second way of understanding Field’s proposal exploits a formal
analogy between upco and Bayes’ theorem. Notice that Equation (3)
just is Bayes’ theorem, if we think of the  terms not as unconditional
probabilities, but as likelihoods. That is, imagine we are calculating
P'(E) = P(E | E*) for some proposition E*. If the likelihoods are
P(E* |E)=B/(B+1)and P(E* | E) = 1/(B + 1), then Equation (3) is
just Bayes’ theorem.

What is the proposition E* here? Let E* describe all epistemically
relevant features of the experience prompting the update. The original
motivation for Jeffrey conditionalization was that you may not be able
to represent E* at the doxastic level—or maybe you can, but you don't
have any priors involving E*, because it’s too subtle or specific. So you
can’t conditionalize, because P(E | E*) is undefined.

But we can extend P to a compatible distribution P* that does
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encompass E¥, by stipulating

PT(E"|E)=B/(B+1),
PY(E* |E)=1/(B+1

Then Equation (3) becomes conditionalization via Bayes’ theorem:

P*(E)P*(E* | E)
P+(E)P+(E* | E) + P+(E)P+(E* | E)

P'(E) =

So this interpretation conceives of Field’s proposal as conditionaliz-
ing on the ineffable but epistemically essential qualities of sensory
experience, by relying on the sensory system to do the effing and
the expecting—i.e. to represent the experience’s epistemically relevant
features, and supply the likelihood values Bayes’ theorem requires.

4. Wagner’s Theorems

There’s also an important connection between our Theorem 2 and a

classic result about Jeffrey conditionalization due to Wagner (2002).
Wagner analyzes Jeffrey conditionalization in terms of “Bayes fac-

tors.” When we update a probability distribution from P to P’, the Bayes
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factor of E is the ratio of its new odds to its old odds:*°

P'(E)/P'(E)
P(E)/P(E

~

Crudely put, Wagner’s insight is that Jeffrey conditionalization com-
mutes when, and pretty much only when, the Bayes factors are consis-
tent regardless of the order. This needs some explaining.

Suppose two agents begin with the same prior distribution, P. Then
they update as in Figure 1. That is, one does a Jeffrey conditionalization
update on E that yields a Bayes factor of BE, followed by another on F
that yields a Bayes factor of BI. The second agent starts with a Jeffrey
conditionalization update on F that yields the Bayes factor B}, then
does a second on E that yields the Bayes factor BS. At the end of this
process, we label their posteriors P;’ and PJ, respectively.

Wagner’s first result is that the two agents will end up with the same
ultimate posterior if the Bayes factors for their respective E updates are
the same, and likewise for their F updates. As before we will assume
regularity to ensure everything is defined.™

Theorem 3 (Wagner). In the schema of Figure 1, if P is regular, then

10. Usually, Bayes factors are used to compare two competing models, M;
and M), in light of some data, D. The Bayes factor is defined as the ratio
of likelihoods, P(D | My)/P(D | M). Using Bayes’ theorem, this can be
rewritten

P(M; | D) / P(M, | D)
P(My)/P(Mz)

Wagner is applying the same idea, with E in the role of M; and E in the
role of M. Except that there is no data D being conditioned on; instead, the
posterior probabilities in the numerator are arrived at by Jeffrey conditional-
ization.

11. Wagner uses a milder assumption than regularity, but for simplicity we’ll
continue to assume P is regular.
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PUEV/PY(F) _ pr
P/(F)/Pj(F) ~— "1
B = 5 Py - ] Py
® [Y\K/\ = J. cond. on F
Py e
?&E\
A
J. cond. on E
Py

Figure 1: The context for Wagner’s Theorems 3 and 4

BE = BE and BY = B together imply P’ = Py

Loosely speaking, Bayes factor “consistency” is sufficient for Jeffrey
conditionalization updates to commute.

Field updating produces exactly this sort of consistency. We can
verify with a bit of algebra that a given input value 8 always yields the
same Bayes factor. In fact, solving for § in Equation (2) we find that
just is the Bayes factor:

So we can think of Field’s Theorem 1 as a corollary of Wagner’s Theo-
rem 3.

But, crucially for us here, Wagner also shows that this kind of
Bayes factor consistency is necessary for commutativity, in almost every
case. Exceptions are possible, for example if E and F are the same
proposition. But our regularity assumption precludes this since EF
can’t have positive probability if E = F. In fact, regularity suffices to
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rule out all exceptions.™

Theorem 4 (Wagner). In the schema of Figure 1, if P is regular then P;' = P}/
implies Bf = Bf and Bf = Bl.

Does this theorem mean that only Field’s Equation (2) can make Jeffrey
conditionalization commute? No, other rules can also consistently yield
the same Bayes factor for the same value of B.

One silly example is the “stubborn” rule, which just ignores j
and always keeps P'(E) = P(E). Substituting this rule into Step 1 of
Field updating makes the Bayes factor 1 for all updates. And, trivially,
updating this way is commutative: if you never change your mind, the
order in which you encounter various sensory experiences won’t make
any difference to your final opinion.

A less trivial example—call it “upsidedownco”—replaces Field’s
Equation (2) with

P(E)

P = pE) +p-pE)

Doing a bit of algebra to isolate 3, we find that this implies

1 P'(E)/P'(E)
P(E)/P(E

~

So the same value of B always results in the same Bayes factor. By
Theorem 3 then, this variation on Field updating is also commutative.

However, both of these alternate rules violate the conditions we laid
out in Section 2. Specifically, they violate symmetry. The stubborn rule

12. Wagner shows that a weaker assumption will do, but again we’ll continue
to assume regularity for simplicity.
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is plainly not symmetric, since it privileges P(E) and neglects the
proposed by experience entirely. And upsidedownco increases P’(E) as
P(E) increases, yet decreases P'(E) as f increases.

So Wagner’s Theorem 4 is not, by itself, enough to secure Field’s
proposed Equation (2). Or, returning now to the social interpretation of
upco and Equation (1), Wagner’s result doesn’t secure our Theorem 2.
But with the help of further conditions like symmetry, we can rule
out alternatives like the stubborn rule and upsidedownco. And this
is exactly how our proof of Theorem 2 proceeds. We pick up where
Wagner'’s result leaves off, using the four conditions of Section 2 to rule
out any option but upco.

5. Conclusion

No way of combining probabilities is best for all purposes. For some
purposes, there are even impossibility results showing that no pooling
rule will get you everything you want.”3 But for some purposes, we
can identify a single pooling rule that is the only one that will do. If
your purpose is to combine your probability with an epistemic peer’s
and Jeffrey conditionalize on the result, and you want to be assured of
commutativity, then upco is the only monotonic, continuous, uniformity
preserving, and symmetric game in town.

6. Appendix: Theorems & Proofs

Here we generalize and prove Theorems 1, 2 and 4. We don’t prove
Theorem 3, proving Theorem 1 directly instead, for simplicity. Readers

13. Aczél and Wagner (1980) and McConway (1981) formulated two properties
and showed that only linear pooling boasts both: Eventwise Independence
says that the pool’s probability for a proposition is a function only of the
individuals” probabilities for that proposition, while Unanimity Preserva-
tion says that, when all the individuals assign the same probability to a
proposition, the pool assigns that too. But then Laddaga (1977) and Lehrer
and Wagner (1983) noted that linear pooling does not boast the property of
Independence Preservation, which says that, when all the individuals take
two propositions to be independent, the pool should too. Together, these
results provide an impossibility theorem: no pooling rule satisfies Eventwise
Independence, Unanimity Preservation, and Independence Preservation.
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interested in a proof of Theorem 3 can consult Wagner (2002, Theorem
3.1).

6.1 Pooling Operators

In the main text we discussed pooling rules, which combine P(E) and
Q(E) into a new probability for E. Since the probability of E is implied
by the probability of E, these rules effectively combine probabilities over
a two-cell partition, {E, E}. For partitions with more than two elements,
we need to extend this definition.

Definition 1 (Pooling operator). A pooling operator takes a countable
partition E and two probability functions P and Q defined on an agenda that
includes E, and returns a partial probability function (PQ)g defined just on
E.

Upco generalizes to countable partitions in the obvious way.

Definition 2 (Upco on countable partitions). Suppose E = {E;} is a
countable partition, and P and Q are probability functions defined on an
agenda that includes E. Suppose further that P(E;), Q(E;) > 0 for at least one
element E; of E. Then the upco of P and Q over E, denoted (PQ)¥, assigns
to each E;

Notice that upco is undefined if there is no E; such that
P(E;), Q(E;) > 0. That is, upco is defined only when P and Q have over-
lapping support on E. The support of a probability function on a partition
is the set of those events from that partition to which it assigns positive
probability. In symbols, we write suppg(P) = {E; € E: P(E;) > 0}.In
this notation, (PQ)¥ is defined just in case suppg(P) Nsuppg(Q) # @.
What's more, when it is defined, the support of the upco of P and Q is
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the intersection of their individual supports. More formally,

suppg ((PQ)¥) = suppg(P) Nsuppg(Q).

We now extend the definition of Jeffrey pooling to countable parti-
tions, and introduce more compact notation.

Definition 3 (Jeffrey pooling). Let E be a countable partition, and let
P and Q be probability functions such that (i) (PQ)g is defined and (ii)
suppg ((PQ)g) € suppg(P). The Jeffrey pool of P and Q on E, denoted
{PQ)x, is the probability function defined by

P(— | E;)(P

(PQYe(—) = ) Q)E(E;)-

E;esuppg(P)

Note that the restriction suppg((PQ)g) C suppg(P) is required to
ensure P(— | E;) is defined for every E; where (PQ)g is positive. This
ensures that {(PQ)g is defined and a probability function.

Notice that, since the support of the upco of P and Q is the overlap
of their individual supports, this condition is automatically satisfied if
upco of P and Q is defined: suppg ((PQ)¥) = suppg(P) Nsuppg(Q) C
suppg(P). So, if (PQ)E is defined, so is {PQ)g.

6.2 Field’s Sufficiency Theorem
We now state and prove the general version of Theorem 1: upco ensures
that Jeffrey pooling commutes, given compatible priors.

Theorem 5 (Field). If ((PQ)¥R)Y and ((PRYY Q)Y are defined, then
((PQIER)E = ((PR)F Q)E-

Proof. The proof generalizes the example from page 4. Intuitively, the
key idea is that (PQ)¥ just multiplies the outcomes within a cell E; by
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Q(E;), and renormalizes. More formally, if A C E; for some i, then

Q¥ (E:)

P(E;)Q(E:)
i P(E))Q(E;))

(PQ)¥(A) = P(A | E)(P

_ P(AE)
- P(E) ¥

=cP(A)Q(E),

where ¢ is a normalizing constant identical for all i.

So take an arbitrary proposition H, and consider for each E; € E
and F; € F the proposition HE;F;. If one of P(E;F;), Q(E;), or R(F)) is
zero, then

((PQYER)Y (HE:F) = ((PR)F Q) (HEiF)) = 0.
If on the other hand P(E;F;), Q(E;), R(F;) > 0, then
(PQ)E (HE:F) = cP(HEF;) Q(E;),
where c is a normalizing constant independent of i and j, and thus

((PQYYR)Y (HE;F;) = cc'P(HE;F;)Q(E;)R(F;),

where ¢’ is another normalizing constant independent of i and j. Simi-
larly,

((PR)¥ Q) (HE:F;) = dd'P(HE;F))R(F))Q(E)),
where d and d’ are again normalizing constants independent of i and ;.
This shows that the probabilities ((PQ)¥R)¥ and ((PR)Y Q)Y

assign to the various HE;F; have the same proportions. And by a
parallel argument, the same is true for the various HEiF]-. So the two
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distributions have the same proportions over the partition {H, H} x
E x F, hence must be identical on this partition. Since H is a union of
elements from this partition, they must assign H the same probability.
But H was arbitrary. O

6.3 Wagner’s Necessity Theorem

Wagner identifies an almost necessary condition for Jeffrey condition-
alization updates to commute. Note that here we are concerned with
Jeffrey conditionalization in general: the shift from P(E;) to P'(E;)
needn’t be driven by a pooling rule, it could be prompted by anything.
Wagner’s theorem concerns any transition from P to P’ that can be
described in terms of Jeffrey’s formula.

Definition 4 (Jeffrey conditionalization). We say that P comes from P’ by
Jeffrey conditionalization on the partition E if suppg(P’) C suppg(P)
and

P(— | E;)P'(E;).

P= ¥

E;esuppg(P’)

We will assume that P is regular on EF; Wagner assumes something
weaker, but we only need the result for regular P. Informally, the result
says that, for Jeffrey updates of a regular prior to commute, the Bayes
factors on each partition must match.

Theorem 6 (Wagner). Let E and F be countable partitions such that P is
regular on EF. Let P come from P by Jeffrey conditionalization on E, P} from
P by Jeffrey conditionalization on ¥, P’ from Pj by Jeffrey conditionalization
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on F, and P} from P} by Jeffrey conditionalization on E. If P/ = P}/, then

P{(Ei)/P(E;y) _ Py(Ei)/Py(Ep)
P(E;)/P(E;,) Py(E;,)/Py(E;,)
Py (F,)/ Py (Fp) _ P3(F;)/Py(Fp)
Pi(F;,)/P(F,)  P(F;,)/P(F,)’

for all E;, E;, in suppg(P), and all F;, F;, in suppg(P).

Proof. By the rigidity of Jeffrey conditionalization, for all i, J:

Pj(E;F;) = P{(Ei)Py(F; | Ei) = P{(E;)P(F; | Ei),
P(E;F;) = P{(Fj)P{(E; | Fj) = P{(F;)P{ (E; | F),
Py (EiF;) = Py(F;)Py(E; | Fj) = Py(Fj)P(E; | Fy),
Py(EiFj) = Py(Ei)Py(F; | Ei) = Py(E;) Py (F; | Ei)

P{(E;)P(F; | E;) = P{(F) P/ (E; | Fj), @)
Py(E;)Py (F; | Ei) = Py(F;)P(E; | Fy). (5)

Now take any E;,E;, in E and F; in F. Using Equation (4), we can
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analyze our first Bayes factor as follows:

P{(E;)/P(Ej,) _
P(E;)/P(E;,)  Pi(

I

_ P{'(E;F;) P(F; | E;,) P(E;,)
P{'(E,Fj) P(F; | Ei;) P(E;,)

Py (E; F;) P(E
P/'(E;,F;) P(E

F)
F)’

ip

i
Parallel reasoning with Equation (5) gives:

Py (Eiy)/ Py (Eiy) _ Py (EiFj) P(E,F))

Py(Ei,)/Py(E;,) Py (EjEj) P(Eq Fy)

I

So the Bayes factors over E are identical. The identity of the Bayes
factors over F follows similarly. O

6.4 Our Theorem

Here we use Wagner’s theorem to show the general form of Theo-
rem 2: upco is the only monotonic, uniformity preserving, continuous,
symmetric, and extensional pooling operator capable of ensuring that
Jeffrey pooling commutes.

Our strategy: first prove that any pooling operator with these fea-
tures, and which ensures Jeffrey pooling commutes for regular prob-
ability functions, must agree with upco when the pooled functions
are regular. Then we’ll appeal to continuity to show that any pooling
operator that agrees with upco on the regular functions agrees with
upco everywhere it’s defined.
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We begin by defining terms:

Definition 5 (Uniform). A distribution P is uniform over E if P( Ei1) =
P(E;,) for all E; , E;, in E.

Definition 6 (Uniformity preservation). A pooling operator is uniformity
preserving if (PQ)g is uniform over E whenever P and Q are uniform over
E.

Notice that we must set the infinite case aside now, because uniform
distributions don’t exist over countably infinite partitions.

Definition 7 (Monotonicity). A pooling operator is monotone if, when P
is uniform over E, Q(E;) < R(E;) implies (PQ)g(E;) < (PR)g(E;).

Note that this is a very restricted form of monotonicity, since it only
concerns the case where one argument is uniform.

Definition 8 (Symmetry). A pooling operator is symmetric if (PQ)g =
(QP)g for all P, Q, and E.

Definition 9 (Continuity). A pooling operator is continuous if

lim (P,Q)g = ((lim P,)Q)E,

n—oo n—oo

whenever (P,Q) is defined for each n and ((limy 00 P,) Q) is defined.

The restriction avoids ruling out operators like geometric pooling and
upco from the get go, since there are sequences Py, P,, ... such that
(P;, Q)Y is defined for each i, but ((limy_,c P;)Q)¥ is not defined.

Definition 10 (Extensionality). A pooling operator is extensional if, given
partitions E and F of equal size, P(E;) = R(F;) and Q(E;) = S(F;) forall i
imply (PQ)(E;) = (RS)g(F;) for all .

The main work in establishing the theorem of this section is showing
that the pooling operator must treat uniform distributions as “neutral.”

That is, pooling any distribution with a uniform distribution just re-
turns the original distribution. We now use the conditions just defined,
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together with commutativity for Jeffrey pooling, to derive this feature in
the case in which the function pooled with the uniform one is regular.

Lemma 7. Suppose that {{PQ)ER)r = ({PR)rQ)x for any finite parti-
tions E and F such that P, Q, and R are regular. Then, if the pooling operator

is uniformity preserving, monotonic, symmetric, continuous, and extensional,
it must treat uniform distributions as neutral. That is, for P uniform over E

and Q reqular on E, (PQ)g(E;) = Q(E;).

Proof. Let E = {E;} and F = {F;} be finite partitions of size n, let Q be
uniform over E, and let R be positive for every element of F. Define P
as follows, where 0 < e < 1/(n—1):

n—1

1
P(EF)=4q7 "
Le ifi #j.

e ifi=j,

Observe that P(E;) = 1/n = P(F;), so P is uniform over E and over F.
Note for later that

ifi = j,

P(Ei|Fj)= {i(nl)e o

P, Q, and R are regular, so Theorem 6 gives the following Bayes
factor identity for all E; , E;,:

<<PQ>>E(E1’1)/P(E1'1) _ <<<<PR>>FQ>>E(E1’1)/<<PR>>F(E1'1)

(PQ)&(Es) ©

Since P is uniform over E, the denominator on the left is 1. And since
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Q is also uniform over E, uniformity preservation implies that the
numerator is also 1. Also, {{PR)rQ)e(E;) = ({(PR)rQ)g(E;) for all i
by the definition of Jeffrey pooling. So Equation (6) reduces to

Since this holds for all E; , E;), the distributions ({PR)rQ)g and (PR))g
have the same relative proportions over E, hence must actually be the
same distribution. That is, for all i:

((PRYFQ)E(Ei) = (PR)(E;).

Using symmetry to move Q to the left, and then substituting P for Q
on grounds of extensionality, this becomes:

(P(PR)¥)E(E;) = (PR)E(E;). )

Now, by definition the right hand side, is:
(PR)E(E;) = ZP(Ei | Fi){PR)g(F)
]

= (1— (n—1)e)(PR)§(F;) +e) (PR)r(F)).
j#

So in the limit as € goes to 0, { PR)¥ assigns over E the same values
(PR)F assigns over F. Let S be this distribution that { PR))r approaches,
i.e. Sis a copy over E of the assignments (PR)r makes over F:

S(Ei) = (PR)§(F),
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for all i. By continuity we have for all i:

Um(P(PR)r)E(E;) = (P Um(PR)r)e(E:) = (PS)E(E;) = (PR)r(F).
The last identity here is the one we need.
Now suppose for a contradiction that (PR)g(F;) # R(F;) for some F;.
Then there must be an Fy for which (PR)g(F;) < R(F). Since S copies
(PR)F, this implies S(E;) < R(Fy). Thus we have:

S(Ex) < R(F),
(PS)E(Ex) = (PR)§(Fy)-

And this contradicts monotonicity. By extensionality, the partition
doesn’t matter, since P is uniform over both E and F. So increasing the
k' value of the non-uniform input should increase the corresponding
output.

This shows that (PR)g(F;) = R(F;) for all F;. Since P was uniform
over F and R regular, extensionality then implies that for any P uniform
over E and Q regular on E, (PQ)g(E;) = Q(E;) for all E;, as desired. O

We now show that only upco has the five features defined above,
and makes Jeffrey pooling commutative.

Theorem 8. Suppose that {{PQ)eR)r = ((PR)rQ)E for any finite parti-
tions E and F and any compatible P, Q, and R. Then, if the pooling operator
is uniformity preserving, monotonic, symmetric, continuous, and extensional,
it must be upco.

Proof. We begin by proving that, if {({PQ)eR)r = ({PR)rQ)E for all
regular P, Q, and R, then the pooling operator must agree with upco
on regular functions. Then we show that any continuous operator that
agrees with upco on the regular functions must be upco.

Let E and F be finite partitions of size 1, and define P as in the proof
of Lemma 7. Let Q and R be positive everywhere on E, and let R’ mimic
on F the distribution of R on E, i.e. R'(F;) = R(E;) for all i.
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P, Q,and R’ are regular, so by Theorem 6 Equation (6) holds, with
R’ in place of R. By Lemma 7, (PQ)g(E;) = Q(E;) for all i, so in this
case Equation (6) reduces to

(Q(PR")r)E(E;) _ Q(Ei) (PR')r(E;) ®)

<Q<<PR/>>F>E(E12) Q(Elz) <<PR/>>F(E12)
But

(PR')e(E;) = Y P(E; | F){PR'}g(F))
]
= (1—(n—1)e)(PR")§(F;) + €;<PR/>F(F')~
J#l

So

lim(PR')g(E;) = (PR")g(F;) = R'(F;) = R(E;).

e—0

Thus, by continuity and Equation (8):

_ QUEi)R(E;)/ Y QUEQR(Er) _
(Ei,)  Q(Ei,)R(E;,)/ Yk Q(Ex)R(Ex)

So (QR)E and (QR)¥ have the same relative proportions, hence must
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be the same distribution.
This shows (PQ)g = (PQ)¥ if P and Q are both regular on E.
Finally, suppose one or the other or both of P and Q is not regular
on E, but (PQ)¥ is defined. Then there are sequences Py, P, ... and

Q1,Q2,..
and limy 0 Q; = Q. And so, by continuity,

. of regular probability functions such that limy e Py = P

<PQ>E = <,}§IQOP”',}§?QQ”>E = églgo<PnQn>E . y y
= nh_f>{}o<PnQn>E = (}}gﬁ;oPn,nh_r&Q@E = (PQ)E-

This completes the proof. O
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