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We represent physical quantities, in science and our everyday prac-
tice, using mathematical entities like numbers and vectors.1 We use a
real number and unit to refer to determinate magnitudes of mass or
length (like 2kg, 7.5m etc.), and then appeal to the arithmetical rela-
tions between those numbers to explain certain physical facts. I cannot
reach the iced coffee on the table because the shortest path between
it and me is 3ft long, while my arm is only 2.2ft long, and 2.2 < 3.
The scale at the farmer’s market does not tilt because one pan holds
a 90g tomato while the other holds two strawberries, of 38g and 52g
respectively, and 38 + 52 = 90. The amount of water that spills out of
the tub when Archimedes gets in is 3.5-times greater than what spills
out when Archimedes Jr. gets in, because their bodies’ volumes are 83.3
and 23.8 cubic decimeters, respectively, and the ratio between 83.3 and
23.8 is 3.5 : 1 (i.e. 83.3 = 3.5 ∗ 23.8).

It seems right to say that, while they provide a convenient way to
express these explanations, the mathematical ‘<’ relation, or the ‘+’ and
‘∗’ operations on the real numbers are not really part of the physical
explanations of these events.2 They just represent explanatorily relevant
features inherent in the physical systems described—i.e. the features of

1. The number of philosophers who have contributed to this paper in some
form is too great to list anywhere, let alone here. I am most indebted to Tim
Maudlin who, along with Hartry Field, Cian Dorr, and Shamik Dasgupta,
supervised the dissertation in which early versions of this view were de-
fended. I am indebted to audiences at NYU, Boston University, Yale, New
College of the Humanities, CU Boulder, and the University of Birmingham.
I have also benefited from discussions of these issues with, among many
others, Claudio Calosi, Erica Shumener, Marco Dees, Eddy Chen, Niels
Martens, Trevor Teitel, Maegan Fairchild, Heather Demarest. During the
work on this paper, I have been the recipient of support from the Andrew
W. Mellon foundation at Rutgers, the Center for the Study of Origins at CU
Boulder, the Early Career Research Fellowship at the Australian National
Universty, and the SQuaRed-Ex (Scientific Quantitativeness, Reduced and
Explained) Project, accepted through the 2022 Marie Slodowska-Curie Ac-
tion (HORIZON-MSCA-2021 Project No. 101067459) and financed by UKRI
grant guarantee (Grant Ref: EP/X022625/1).

2. This is not entirely uncontroversial. Some have tried to defend more so-
phisticated versions of the claim that mathematical objects directly explain
physical facts involving quantities, most recently Knowles (2015).

http://www.philosophersimprint.org/023029/


z. r. perry On Mereology and Metricality

the tomatoes, strawberries, bathtubs, and ancient Greeks involved. A
theory of “quantitative structure” is an account of these features, the
physical properties and relations really doing the explaining.

People have thought3 the proper account of quantities requires that
we give up on the idea that quantitative structure be intrinsic in this way.
They’ve thought that, to the extent predicates like “2π-times as long as”
or “three-and-a-half times the volume of” pick out physical relations at
all, they only be defined in terms of global structural characteristics of
the domains of lengthy or voluminous entities,4 not in terms of how
their relata are in themselves.

I will show that this is a mistake. This paper defends a theory of
quantitative structure that does justice to the intuition that the phys-
ical relations which constitute quantitative structure are intrinsic. I
argue that, for some quantities—namely, the members of a special class
of quantities I call “properly extensive”—the explanation for why our
mathematical representations are faithful comes from their connection
to parthood. Let me give an example of what I mean; consider the
following two judgments:

x is shorter than y(1)
x is as long as a part of y(2)

(1) is an instance of an ordering relation on lengthy objects, where
the ordering relation is part of what constitutes length’s quantitative
structure. (2), alternatively expressed as “some part of y has the same
length as x”, can be broken down into, on the one hand, a mereological

3. Most notably Hölder (1901), Krantz et al. (1971), and Arntzenius and Dorr
(2012), as well as Mundy (1987) and Eddon (2013). I will also argue that,
despite initial appearances to the contrary, this is a commitment of Field
(1980) and (1984) for most quantities.

4. Or, in the case of second-order theories of quantity like Mundy (1987), the
total domain of determinate length or volume properties.

relation – parthood – and, on the other, the relation denoted by a
predicate like “as long as” or “same length as”.5

In this paper, I will argue that claims like (1) reduce to claims like
(2).

1. Quantitative Structure is Parthood Structure

More precisely, I defend the Mereological-Reductive (or “M-R”) account
of quantitative structure, which defines (1) as “(2) and x and y do not have
the same length”, and gives a definition—in terms of parthood and the
sharing of determinate length properties—for all the relations which
constitute length’s quantitative structure.

Many other accounts of quantitative structure introduce a quantity’s
ordering relation, like (1), or summation relation (like what’s appealed
to in the balance scale example, or discussed, below, in the case of
length) as primitive posits.6 Accounts like these, if they want to capture
the intuitive connection between (1) and (2), have to posit bridge laws
between their primitive relations and the mereological ones. The M-R
account avoids this by taking the connection to be definitional. There is
a tradeoff, of course. Primitive posits are as adaptable as their axioms
allow them to be, and it’s easy to generalize an account that makes
use of, e.g., primitive ordering relations to apply to any quantity that’s
ordered. In contrast, the M-R account’s definitions of ordering, sum-
mation, and metrical ratio relations can only be satisfied by quantities

5. On the reading I’m interested in here, “x has the same length as y” means
simply that x and y instantiate the same (i.e. numerically identical) length
property. There are other readings, on which “same length as” is a fundamen-
tally two-place relation that constitutes another part of length’s quantitative
structure. I discuss this alternative in section 3.2.

6. E.g. Mundy, Eddon, Bigelow and Pargetter, and (arguably) Russell posit
primitive second-order relations, while accounts based on Hölder or Krantz
et al. posit primitive ordering relations between, and concatenation oper-
ations on, physical objects. (Mundy, 1987), (Eddon, 2013), (Bigelow et al.,
1988), (Krantz et al., 1971), (Hölder, 1901), (Russell, 1903).
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which put the right necessary constraints on the parthood structure of
their instances.7

In this section, I give an overview of the M-R account of quantitative
structure, and argue that the commonly accepted way quantitative
and mereological structure can be related, what is sometimes called
“extensiveness” or “additivity”, is too weak to support this account. The
M-R definitions, I argue, apply only to the properly extensive quantities,
a special sub-class of the extensive quantities which put additional
constraints on the possible mereological structure of their instances.

In sections 3 and 4, I present a formal M-R account of the quantity,
volume, which takes its proper extensiveness as fundamental and de-
fines the ordering, summation, and metrical relations which constitute
its quantitative structure in terms of this connection to mereology.8

The system also serves as a general schema for M-R accounts of other
properly extensive quantities, like length, area, temporal duration, etc.
In section 2, I argue that no other theory of quantitative structure does
justice to the intrinsicality intuition as it applies to the properly ex-
tensive quantities, and present a number of other advantages of the
account.

7. That is, the fact that the M-R account does not apply to all quantities is
an unavoidable consequence of its being a genuinely reductive account of
quantity. A theory of physical quantities which ground their structure in
the role those quantities play in the physical world cannot give the same
explanatory story for two quantities with wildly different physical roles. In
Section 5.3, I elaborate on why I think the restricted domain of applicability
of the M-R account constitutes an explanatory advantage.

8. In what follows, I’m assuming that some mereological relations are ei-
ther metaphysically fundamental or, if derivative, are not dependent on
properly extensive physical quantities. This means the M-R account is in-
compatible with the “Spatial Approach” of Markosian (2014) on which all
mereological relationships (between physical objects) are determined by
their spatial properties and relations. The M-R account is also likely incom-
patible with “workings parts” views, proposed by Mellor (2008) and further
defended by Williams (2008), on which the parthood relation depends on
a spatially-defined “containment” condition as well as the right kind of
causal relationship. Many thanks to an anonymous reviewer for pressing
me on this. I discuss some of the other nuances of intrinsicality and the M-R
account at the end of section 2.

1.1 Summation Structure
If the M-R account is going to be able to do all I’ve promised it can,

it needs to give definitions of the ordering, summation, and metrical
ratio relations that capture the idea that they reflect something intrinsic
to their relata. This is easy in the case of length ordering, since (2) is a
natural reading of (1) and is also an intrinsic relation.

It’s less obvious how summation or metrical relations should be
defined on this account. A common expression of length summation
relations involves talking about length properties rather than lengthy
objects. We say “x’s length is the sum of y’s and z’s lengths”. The natural
expression of the relation between lengthy objects doesn’t use terms like
‘sum’ at all. Rather, it says

(3) x is as long as y and z put together.

(3) has, if anything, more of a mereological ring to it than (1). Indeed, on
a literal reading of ‘put together’, we can gloss (3) as: “x has the same
length as an object, o, composed out of y and z put together, would”.
However, while this reading is a mereological relation, it will not do as an
analysis of (3). This is because it requires appeal to o, and in particular
o’s length. But o might not be lengthy; that is, y and z might not be put
together in the right way for o to have length (if, e.g., they make a ‘T’
shape). Or o might be lengthy but not have the right length (if y and z
have some lengthy overlap, o’s length will not be the “sum” of their
lengths).

The M-R account defines summation structure in a different way. It
analyzes (3) in terms of y and z’s relations to x’s parts, together with
the requirement that those parts are put together “in the right way” (a
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condition which will vary between different quantities):9

(4)
x is composed of a segment as long as y and a segment as long
as z, put together in the right way.

Here, the M-R account’s analysis goes beyond the intuitive mereological
upshot of the summation relation. The M-R account understands both
the ordering and the summation relations as specifying (among other
things) something about the physical makeup of one of their relata. To
say that b is shorter than a, or to say that a is as long as b and c put
together, is to say something about a’s internal structure—specifically,
whether a has any parts, what the configuration of those parts is relative
to each other, and whether they share length properties with b or c.
These relations, so defined, are intrinsic to the system composed by
their relata. Indeed, they satisfy a stronger condition: since they depend
only on the intrinsic properties of each of their relata—i.e. on how each
relatum is in itself —they are not just intrinsic but internal relations.

1.2 Constructing Metric Structure
The M-R account, similarly, defines ratio relations like “twice as

long as” or “4.6-times the volume of” in terms of mereological relations
and the sharing of intrinsic properties. Though our expressions of
them appeal to numerical ratios like 2 : 1 or 4.6 : 1, the physical ratio
relations should be understood as relations between concrete physical
objects, not as relating objects to numbers. If that’s right, then there
are an infinitude of distinct, two-place, ratio relations; i.e. “2-times the
volume of” and “4.6-times the volume of” are distinct relations between

9. Two lengthy objects are “put together in the right way”, intuitively, when
they are laid end-to-end. For other quantities, being put together in the right
way will amount to something different. Volume, for instance, is simpler
than length in this regard; two voluminous entities are “put together in the
right way” just in case they don’t overlap (or have a “volume-less overlap”,
where this means either their overlap instantiates 0m3, or it’s not voluminous
at all). I discuss this further in section 3.3.

voluminous objects. The M-R account gives a reductive definition, in
terms of mereology and the sharing of intrinsic volume properties, for
each such relation, by way of a procedure which pairs ratio relations
with their mereological analyses.

Figure 1: Two voluminous entities.

The “ratio procedure”, performed on an ordered pair of voluminous
objects, specifies the M-R account’s definition of the ratio relation they
stand in. Let me give an example of how this works.10 Suppose we want
to determine the volume ratio of b to a (how much more voluminous b
is than a). We perform the ratio procedure on a and b.

First, we “take a out of b”, where this just means that we partition
b into as many non-overlapping copies of a (i.e. parts with the same
volume as a) as we can. In this case, that number is 3. Then there is a
part of b which is our remainder, r1, which is smaller than a. For step
two, we do the same thing but taking r1 out of a, which yields 2 non-
overlapping copies and another remainder r2. The third step follows
this pattern, taking r2 out of r1. r1 is composed of 2 non-overlapping
copies of r2 with no remainder. Since there’s no remainder, we stop.

This procedure determines the complex mereological property
which will be the M-R account’s analysis of the “volume ratio” of

10. In section 4.2, I formally define this procedure and show how the axioms
of my account of properly extensive quantities entail that it always have a
well-defined output.
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Figure 2: Step 1, Taking a out of b.

b to a (let’s say that b “partitions into” some class of its parts iff no two
of the members of that class overlap and b is their fusion):

∃x1, x2(b partitions into: 3 parts with the same volume as a,
and another part, x1) ∧ (a partitions into: 2 parts with the
same volume as x1, and another part, x2) ∧ (x1 partitions into:
2 parts with the same volume as x2).

Figure 3: Step 2 and Step 3

How does this give us the volume ratio between a and b? Taking a
out of b tells us approximately how much bigger b is than a. Taking r1

out of a tells us approximately how much bigger a is than r1. This, in

turn, gives us a better approximation of how much bigger b is than a.
Each time we repeat this procedure, we get a better and better approxi-
mation. If the procedure terminates, we have a perfect approximation.
Indeed, r2 goes evenly into a and b. From the procedure we can deduce
that a is composed of 5 non-overlapping copies of r2, and b 17 copies. So
the ratio of b to a is 17/5, i.e. b = 17

5 ∗ a = 3.4 ∗ a. Indeed, “b partitions
into 17 parts, all with the same volume as r2, while a partitions into 5
such parts” amounts to the same thing as the definition given above.
Why not just use that as the definition for volume ratios, then?

Here’s why: The ratio procedure is not guaranteed to terminate,
and if it does not terminate, it cannot output a final remainder (like
our r2). However, there’s another way to determine the ratio between
a and b from this procedure that doesn’t require appeal to the final
remainder. Recall that the numbers, ⟨3, 2, 2⟩, output by the procedure,
count up certain non-overlapping parts of b, a, and r1. We can use these
to construct what is called a “simple continued fraction”:

17
5

= 3 +
1

2 +
1
2

The list of integers output by this procedure is what is sometimes
called an “anthyphairetic ratio”.11 Continued fractions are one way to
express this sort of ratio. Even when the ratio procedure does not termi-
nate, it will still output a list of integers that count up the relevant sets of
non-overlapping parts of a and b and the various non-final remainders.
The only difference is that, when the procedure does not terminate,
we get an infinitely long list. This is okay because continued fractions
can, in fact, be continued indefinitely, and infinite simple continued

11. The ratio procedure, as defined in section 4.2, is closely related to the process
of anthyphairesis, a term derived from the Greek for “reciprocal subtraction”.
Cf. (Fowler, 1987).
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fractions also pick out unique real numbers! It’s this formal feature which
allows the mereological relations generated by this procedure to serve
as the definitions for volume ratio relations.

1.3 Proper Extensiveness
I mentioned before that the M-R account applies only to quantities

that put the right constraints on the possible parthood structure of their
instances. Here’s what that means: If the M-R definitions of an ordering
relation, “LESS-Q”, or summation relation, “Q-SUM”, are to be any
good, at the very least the definiens and definiendum must be necessarily
coextensive. That is, a quantity, Q, is amenable to the M-R account only
if it satisfies:

(5)
□(x is LESS-Q than y ↔ x and y have different Q-properties,
but x has the same Q property as some part of y)

(6)
□(y and z Q-SUM to z ↔ x can be partitioned into two parts
that are put together in the right way and which have the same
Q-properties as y and z, respectively)

As well as the analogous necessary biconditionals for the ratio relations.
This means that for many (indeed most) quantities, the account

cannot get off the ground. An M-R account of temperature, for instance,
would get the quantitative relations almost entirely wrong. The ice in
the freezer, at 30◦ Fahrenheit, is less warm than 212◦F water boiling
on the stove. But this fact about temperature ordering clearly doesn’t
mean that the ice in the freezer is as warm as some proper part of the
water on the stove!

What about quantities that, unlike temperature, put significant con-
straints on the mereology of their instances? Additive (also called

extensive12) quantities are ones where, intuitively, wholes inherit their
Q-properties from the Q-properties of their parts. More precisely, Q is
additive just in case: whenever x and y instantiate Q-properties, and
are “put together in the right way”, the mereological fusion of x and y
instantiates the “sum” of their Q-properties. Being additive is necessary
for a quantity to admit of an M-R account of its structure—a quantity
is additive just in case it satisfies the right-to-left direction of both (5)
and (6)—but it is not sufficient.

Here’s why: Consider the additive quantity, mass. On the standard
model of particle physics, there are fundamental particles with differ-
ent masses, like the electron (approx. 9.19 × 10−31kg), and the muon
(approx. 1.88 × 10−28kg). On a straightforward interpretation of this
theory, Ellen the electron and Miriam the muon are mereological sim-
ples. This is inconsistent with both (5) and (6), since Ellen does not have
a part with the same mass as Miriam, yet the standard model is not
(and should not be) taken to be inconsistent with mass’s additivity. So,
while additive quantities have a very close connection to mereology, a
quantity’s being additive is not sufficient to support an M-R account of
its structure.

In Perry (2015), I argue that some quantities put stronger constraints
on the mereology of their instances than what additivity requires. These

12. The IUPAC (The International Union of Pure and Applied Chemistry)
“Green Book”—part of a series of manuals meant to “provide a readable
compilation of widely used terms and symbols” and promote “good practice
of scientific language”—defines extensiveness as follows: “A quantity that is
additive for independent, noninteracting subsystems is called extensive”. p.6.
There has been little discussion in the philosophical literature about additiv-
ity itself. To the extent it has been discussed by contemporary philosophers,
they have followed scientific practice, cf. (Busse, 2009), (Johansson, 1996),
and (McQueen, 2015).
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quantities I call “properly extensive”13 (recall that the unmodified term
‘extensive’ is equivalent to ‘additive’). The properly extensive quantities
comprise a sub-class of the extensive quantities (quantities which are
extensive but not properly so I call “merely additive”). Some quantities
we classify as additive are, I claim, also properly extensive—specifically
length, area, volume, temporal duration, and the invariant relativistic
interval. Properly extensive quantities put stronger constraints on the
relationship between quantitative structure and mereology than merely
additive ones, like charge or mass, do.14 Most importantly, properly
extensive quantities, intuitively, satisfy (5) and (6).

The connection that properly extensive quantities have to the part-
hood structure of their instances is what makes them amenable to the
M-R account’s definitions of the quantitative relations. This amounts to
more than just a restriction on the range of applicability of the account.
It tells us how and why the M-R definitions work when they do. That
is, the M-R account, on its own, only tells us that our representations of
Q are faithful insofar as the structure of the mathematical entities we
appeal to mirrors the mereological structure of that quantity’s instances,
and the distribution of intrinsic Q-properties over that structure. The
proper extensiveness of Q tells us why there’s a necessary correspon-
dence of this sort between the mathematical and the mereological. This

13. There is some reason to suspect that something like what I call “proper
extensiveness” is what Meinong (1896) calls “divisible quantities” (‘Teilbare
Größen’). However, there is also evidence that this term was used by Meinong
to indicate infinite divisibility rather than a correspondence between quanti-
tative structure and mereological structure. Instances of properly extensive
quantities are not necessarily infinitely divisible (as Lemma 1, in section 4.1,
below, shows). Russell (1903) uses the term in a completely different way.
He treats divisibility as a quantity itself, where short lines are less divisible
than longer ones, which are less divisible still than two-dimensional regions,
and so on. His (1903) is also the first place I have found advocating that the
term ‘extensive’ not be taken to entail divisibility.

14. The ‘properly’ modifier is meant to suggest, as I think is true, that this
feature better characterizes the intuitive notion of extension, being extended,
or measure of extent than the currently accepted sense of ‘extensive’ in terms
of additivity. I won’t offer a defense of this claim here.

is what it means to say that the success of our mathematical representa-
tions of these quantities is explained by their connection to parthood.

1.4 Aside: But what about Extended Simples?
Saying volume is properly extensive commits us to significant con-

straints on the possible physical structure of voluminous entities. Prop-
erly extensive quantities are unique in that these mereological con-
straints can require that a voluminous object have parts of a certain sort.
One might wonder whether this puts a claim that length or volume is
properly extensive in conflict with certain theses about mereology. In
particular, the view that spatially extended mereological simples are
possible.15 Extended simples are mereologically simple, which just means
that they do not have any parts except themselves. However, unlike the
mereologically simple massive point particles I mentioned earlier, they
are also spatially extended, which is just to say that their length, area,
and/or volume is non-zero.

The most commonly discussed kind of extended simple is a mereo-
logically simple physical body that is spatially extended, yet occupies
a region composed of smaller sub-regions (“simple body/composite
region”). For instance, a 2m spherical hunk of matter, with no proper
parts, occupying a 2m spherical region of Euclidean 3-space. Another
sort of extended simple16 would be one which fully occupies a simple
region—i.e. a region with no sub-regions (of non-zero volume). If space
turns out to be composed of tiny, discrete “cells”, then a physical par-
ticle occupying the smallest possible region will not be a point-sized
simple but an extended one (“simple body/simple region”).

Neither of these cases is inconsistent with length, area, or volume’s
proper extensiveness, though there are a few steps required to see
exactly why that is. Volume, fundamentally, is a property of regions of
spacetime and, to the extent that a material object can be said to have

15. See Markosian (1998), McDaniel (2007), Simons (2004) for defense of, and
McDaniel (2003), Spencer (2010) for discussion of arguments against, the
possibility of extended simples.

16. Cf. Braddon-Mitchell and Miller (2006).
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a volume, they only have volume derivatively. Material bodies, that is,
have the volumes they do in virtue of occupying a region of that volume.
The constraints that properly extensive quantities put on the mereology
of their instances only apply to the entities which possess volume non-
derivatively. If we accept this, then an extended simple body occupying a
composite region of non-zero volume is entirely consistent with volume
being a properly extensive quantity. So volume’s proper extensiveness
is not a threat to the possibility of the “simple body/composite region”
type of extended simple. 17

On the face of it, nothing about the second kind of extended simple
(“simple body/simple region”) is inconsistent with the proper extensive-
ness of volume. I’ve already claimed that volume’s proper extensiveness
is compatible with space or spacetime being discrete. However, we can
get a problem if we add the requirement that some of these extended
simple bodies differ in size (i.e. one simple is more voluminous than
the other). This does conflict with volume’s proper extensiveness, since
the differences in size between the simples would be grounded in the
different volumes of the regions they occupy. But if volume is properly
extensive, then no two simple regions could differ in volume! Whenever
there’s a simple extended region, R (i.e. a region of non-zero volume
with no proper sub-regions), there can exist no regions that are less
voluminous than R—since, if there were, then R would have to have a
proper part of that volume, and so wouldn’t be simple.

17. Things become more complicated, however, if you combine this conception
of an extended simple with a supersubstantivalist ontology, on which phys-
ical objects are literally identical to the regions of space/spacetime they
“occupy”. A region containing some matter, on this view, is just a region with
the intrinsic, fundamental, and monadic “filled with matter” property. This
isn’t the only way to be a supersubstantivalist. There are other, more restric-
tive, versions which only allow parts of spacetime to instantiate geometric
properties. Cf. Skow (2005), Sklar (1974), and Sider (2001) for discussion.
Regardless, most supersubstantivalists take it as given that the mereology
of objects and the mereology of the regions they occupy must be the same.
If the mereology of bodies must match the mereology of the regions they
occupy, then volume’s proper extensiveness would rule out supersubstantival
extended simples occupying differently-sized, spatially extended regions
(supposing that we interpret ‘simple’ in the ordinary way).

So volume’s proper extensiveness rules out there being two simple
regions that differ with respect to their volumes. Extended simple bodies
of the “simple body/simple region” type are, therefore, only possible
if they are all equivoluminous, since extended simple regions are only
possible if they are all equivoluminous. Luckily, it’s generally only the
first sort of simple that most fans of extended simples want to allow.18

And, of the version of the second type of simple which are discussed at
all, it’s largely the version of that simple that’s consistent with length’s
proper extensiveness, primarily by those interested in the possibility of
certain kinds of discrete spaces.19

1.5 The Rest of the Paper
Sections 3 and 4 make good on the promises made in this section.

There, I present a formal M-R account of volume which takes the neces-
sary constraints obeyed by properly extensive quantities as axioms.20

From the assumption of volume’s proper extensiveness, and very little

18. Cf. McDaniel (2009), as well as the papers mentioned in note 15 (with the
exception of Spencer (2010)).

19. A borderline exception to this comes from Tognazzini (2006). Tognazzini
claims that, other things being equal, our definition of ‘mereological sim-
ple’ should leave open that, if it’s possible that there be material entities
which occupy different-volumed simple regions, such entities would still
be mereologically simple. However, Tognazzini’s carefulness shouldn’t be
taken to clash with volume’s proper extensiveness. It’s philosophical best
practices to, other things being equal, propose definitions of key notions that
are maximally agnostic as to other philosophical views. This is a worthwhile
strategy for any philosophical investigation, but such agnosticism is not
meant to preclude us eventually accepting a positive theory which is more
restrictive about what’s possible.

20. The conditions I give for properly extensive quantities in Perry (2015) make
use of primitive ordering and summation relations between Q-properties.
The M-R account has no such relations at the fundamental level. As such, if
we want to take volume’s proper extensiveness as fundamental, we need to
express the constraints it puts on the parts of voluminous objects a different
way. (Note that (5) and (6) will be of no help here. Once we plug in the M-R
definitions for ‘LESS-Q’ and ‘Q-SUM’, they become instances of the trivial
‘□(P ↔ P)’). In section 3.6, I show that we can articulate these constraints
in terms of the fundamental posits of the M-R account—viz. mereological
relations and the sharing of intrinsic determinate length/volume properties.
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else, we can show that the volume ordering and summation relations, as
defined by the M-R account, and the volume ratio relations, whose M-R
definitions are generated by the “ratio procedure” (formally defined in
section 4.2), are faithfully represented by the arithmetical ordering, sum-
mation, and ratio relations on the real numbers. Section 5 concludes and
clarifies some issues set aside in the previous sections. Before presenting
the formal M-R account of volume, it will be useful to understand how
and why its competitors end up committed to quantitative structure, in
particular metric structure, being radically extrinsic.

2. The Extrinsicality Worry

The M-R account defines volume metric relations in an intrinsic way.
I have claimed that this is the result we should want. That is, insofar as
we take quantitative structure to explain (or be part of the explanation
for) physical phenomena, we should, thereby, want our account of what
that structure is to render it (or the relevant sub-structure) intrinsic to the
systems it’s called upon to help explain. Consider, for instance, a cruel
twist on the iced coffee scenario from the introduction: On this variant,
the straight path from my body to the desk is shorter than my arm, but
the ratio of the path’s length to my arm’s is 0.96-to-1. Even though I am
close enough to reach the iced coffee, my fingertips can only just brush
the sides of the cup, and, so, it remains frustratingly out of my grasp.
The M-R account locates the source of the explanatory power of the
numerical ratio 0.96-to-1 in the intrinsic properties and mereological
structures of the physical entities involved (or the regions they occupy).
Other accounts of quantity fail to do justice to the intrinsicality intuition.
Let me explain why:

I have mentioned before that most other accounts take ordering
and/or summation relations (or an analogue) as primitive, posit some
axioms that these relations obey, and use them to ground metric struc-

ture.21 These accounts ground metric structure holistically, by appealing
to representation and uniqueness theorems. These are theorems that
say a given domain (like the set of all that quantity’s instances), over
which some relations (the primitive ordering and summation relations)
are defined that satisfy certain axioms, can be well represented by some
mathematical structure or structures.

These theorems naturally suggest a certain way of defining the
length ratio between x and y. Specifically, x and y’s lengths stand
in a ratio of n-to-1 just in case they imply that any function from
(equivalence classes of same-lengthed) lengthy objects to real numbers,
which preserves the ordering and summation of the domain, maps
x and y to numbers that, respectively, stand in the mathematical ratio
n-to-1. That is,

(7)

x is n-times the length of y ↔ For any function, f , from the set
of lengthy objects to R, if f is such that (for any lengthy a, b, and
c) b is at least as long as a ↔ f (a) ≤ f (b), and c is as long as a
and b put together ↔ f (a) + f (b) = f (c), then f (x) = n ∗ f (y).
And there exists at least one such function.

A definition based on this biconditional would, clearly, be radically
extrinsic. It would make “n-times the length of” dependent on the
properties of certain functions from the total domain of lengthy objects
to the real numbers. We might hope that the physical facts appealed
to in order to prove the representation and uniqueness theorems may
be used to give us an intrinsic definition. However, problems arise

21. This is a sensible approach, since there’s little prospect in taking metric
structure as primitive in any economical way. “n-times the volume of” and
“m-times the volume of”, if construed as two-place relations between volu-
minous entities (i.e. not as relations between a pair of voluminous entities
and a number), are substantively different relations, and we would have to
posit distinct axioms for each and every such ratio relation if we were to
take them as primitive.
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because representation and uniqueness theorems prove that a domain
is homeomorphic to a given mathematical structure by appealing to
global properties of a domain. Specifically, in addition to assumptions
about and the distribution of ordering and summation relations (or
some other sub-metrical analogue) over those domains, they make
“structural” assumptions about the domain itself —i.e. that it is well
populated, or that it has sufficient variegation in which of that quantity’s
magnitudes are instantiated.

Let me give a concrete example. What sorts of definitions would
be available to an account based on one of the measurement theoretic
systems of Krantz et al. (1971)? Consider the definition we get from
Krantz, et. al.’s definition of a function from objects to numbers used
to prove a representation theorem about “Archimedean Ordered Local
Semigroups”, which means a domain of entities with an ordering rela-
tion (Ordered) and summation operation on them such that no lengthy
object is infinitely longer than any other (Archimedean), and the “sum”
operation ‘◦’ needn’t be defined for every pair of objects of the domain
(Local Semigroup). It’s plausible that length is such a quantity:22

x is n-times longer than y =d f lim
m→∞

N(xm, y)
N(xm, x)

= n(8)

Where n ∈ R, and the term ‘N(x, y)’ denotes the
maximum number of objects with the same length as
x such that y is longer than the sum of their lengths,
and x1, x2, x3, . . . are an infinite sequence of lengthy
objects whose lengths converge on 0m in the limit.

22. Krantz et al. say that length is an “extensive structure”, which are a specific
kind of Archimedean ordered local semigroup. An extensive structure is
such that the ordering relation is transitive and total, and the summation
operation is associative, commutative, and (regarding the length ordering)
monotonic. We will not need to consider these axioms in detail, since they
are not the source of the account’s troublesome extrinsicality.

This definition makes appeal to entities whose existence is only ensured
by certain “existence and richness” axioms on the domain. Specifically,
Krantz, et al. use what they call a “solvability” axiom, which assumes
that the domain contains an object that “solves” any “inequalities”
between a given pair of its elements. So, if a is shorter than b, there’s
some c such that a is as long or longer than b and c put together. This
axiom will be required to ensure that each of the smaller and smaller
xi’s exist, and that they converge on 0m. Another existence axiom is
required in order to ensure that enough “copies” (i.e. other objects with
the same length) of each of the xi’s exist. Without them, the term N(x, y)
isn’t guaranteed to denote the right number. Moreover, while the total
domain of lengthy objects is expected to satisfy these axioms, Krantz et
al. warn against thinking that this means they’d be satisfied by a subset.
They write that “..an axiom such as solvability may be false if attention
is restricted just to that subset of objects tested: the solution to some
inequality or equation may lie outside that subset. In fact, we may have
accepted solvability to begin with because of the fine grainedness of
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the entire object set.” (Krantz et al., 1971, p. 28, my emphasis).23

It’s easy to see, then, how an account that employs “global” struc-
tural assumptions which apply over the domain taken as a whole, but
not necessarily to a given subset, could fail to give an intrinsic account
of metric structure. There is no guarantee that there is enough structure

23. I think that there’s a kernel of a good definition here. That is, I expect Krantz
et al.’s definition could be modified to give one equivalent to the version I
defend in section 4. Imagine a variant of Krantz et al.’s account that adds the
assumption that length is properly extensive, call it “K + PE” (for “Krantz
plus proper extensiveness”). One (though certainly not the only) way to
achieve this would be by adding the mereological axioms I present in section
3.6. The definition of length ratio relations on K + PE is the same, except
that the limit involved in (8) is replaced with:

lim
m→∞

N∗(am, y)
N∗(bm, x)

.

Where a1, a2, a3, . . . are a sequence of parts of y whose lengths approach 0m
in the limit, and likewise for b1, b2, b3, . . . and x, and every an is as long as
bm if n = m. And the term ‘N∗(x, y)’ is the equivalent of ‘N(x, y)’ when you
restrict your quantifiers to only y and y’s parts.
The K + PE does not need to rely on independent existence and richness
assumptions about the domain. The existence of enough copies of each
member of each sequence (the various ai’s and bi’s) are guaranteed by
length’s proper extensiveness. Since the constraints of proper extensiveness
can be understood entirely in terms of x and y’s parts, length ratio relations
are intrinsic according to K + PE. However, while K + PE improves on the
original in some respects, it also comes with some added disadvantages.
Specifically, many of K + PE’s axioms and primitive posits are redundant.
That is, proper extensiveness plus the totality of the length ordering entails
all the necessary axioms of the M-R account of length (just as it would for
the M-R account of volume).
I argue that the M-R account for quantities like length can adequately define
these metric relations (I show it for volume, below). If this is right, then we
can give an adequate account of quantitative structure using only a few
of K + PE’s axioms and only one of its two primitive relations (viz. length
ordering). If we are interested in using proper extensiveness to give an
intrinsic account in the spirit of Krantz et al.’s definition in the text, we
would be much better off accepting the M-R account than we would K + PE.
The M-R account is entailed by a proper subset of K + PE’s axioms, and
employs no primitive quantitative relations.

in the subsystem consisting of just x, y, and their parts to recapture
metrical ratio relations.

Second-order Extrinsicality Objection
Some, like Mundy (1987), have thought that the problem with these

existence and richness assumptions about the domain comes from their
contingency. Representation and uniqueness theorems rely on global
structural assumptions that are not guaranteed to be satisfied by a given
subdomain. But, so the worry goes, its possible that a given subdomain
have been all that there is. It seems to me, however, that this contingency
is only a symptom of the broader problem of extrinsicality. We think
the metric relations between elements of a given sub-domain (of the
lengthy objects, say) would have still obtained had that subdomain
been all that there is because we think that length metric relations do not
depend, for their instantiation, on anything outside their relata. This
is an important result, if correct, since most accounts of quantitative
structure which successfully avoid the contingency objection still render
metric relations radically extrinsic.

For instance, Mundy (1987) posits primitive second-order relations of
“ordering” and “summation”, which relate mass24 properties. He accepts
a Platonism about properties according to which these universals, and
the primitive second-order quantitative structural relations they stand
in, are necessary existents. The first-order comparative mass relations
between objects are all grounded in higher-order relations between their
properties, which allows Mundy to avoid the contingency objection.

24. A key feature of Mundy’s second-order account is its generality, the account
applies in the exact same way to any quantities which share the same
structure (the so-called “unsigned scalar quantities”, like length, volume,
temperature (in Kelvin), etc.).
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Consider, for instance, his definition of “less massive than”:

(9)
x is less massive than y =d f there exist mass universals U1 and
U2 such that U1(x) and U2(y) and U1[<]U2 (where [<] is the
primitive second-order ordering relation).

No problem there. An instance of the primitive [<] relation doesn’t
depend on anything, so its obtaining doesn’t depend on things extrinsic
to U1 and U2 – or x and y for that matter. If x being less massive than y
depends on their intrinsic properties standing in a primitive two-place
relations, then “less massive than” is not an extrinsic relation. However,
when we move from the ordering relations to metrical relations, things
don’t look so good.

x is n-times as massive as y =d f ∃U1, U2 such that...(10)

U1(x) and U2(y) and: (1) U1 and U2 are part of a domain of
mass universals M such that the distribution of the primitive
second-order ordering and summation relations over this
domain satisfies axioms A1, A2, A3, . . . ; (2) U1 and U2 are
such that there’s a function φ, from M to R – where for any
universals a, b, c ∈ M, a[<]b iff φ(a) < φ(b), and ab[∗]c iff
φ(a) + φ(b) = φ(c), and φ(U1)

φ(U2)
= n).

Where ‘[∗]’ is the three-place second-order summation relation over the
mass universals. Here this definition, again, just depends on universals
and the fundamental ordering and summation relations they stand
in. If universals are necessary existents, and if the axioms governing
the primitive second-order relations over them are necessary, then this
definition avoids any contingency worry we might have. However, this
doesn’t help at all with the problem of extrinsicality. The obtaining

of a given metric relation between a and b will (in part) depend on
universals neither a, b, nor any of their parts instantiate, and on the
primitive relations those universals stand in.
Field and Extrinsicality

The only account that comes close to avoiding extrinsicality is Field’s.
The part of his account which fares best is the theory of spatial (or
spatiotemporal) distance. Intrinsicality is a bit different for a relational
quantity like distance. We shouldn’t think of facts about the distance
from a to b as needing to be intrinsic to a and b. Rather, we should think
of them as a matter of being intrinsic to (the shortest) straight path from
a to b. If this is right, then Field’s definition of “the distance from x to y
is twice that from z to w” (which we’ll express as ‘xyR2zw’) in terms of
betweenness and congruence does satisfy the intrinsicality condition:

(11)
xyR2zw ↔ ∃u(u is a point ∧ u is between x and y
∧ xuConguy ∧ uyCongzw)

This relation between x, y, z and w is intrinsic to the straight lines xy
and zw. It holds in virtue of the existence of a part, u, of xy, and the
fundamental congruence relation, ‘Cong’, between zw and some parts
of xy. This definition of “Rn” is only available for rational n; irrational
metric relations (like “the distance from x to y is π-times the distance
from z to w”) are more difficult to define on this account. However,
there’s at least some reason to believe that these will be either intrinsic
or, at least, not radically extrinsic.25

Unfortunately, Field’s success does not extend to monadic quantities

25. There’s a way to get closer to a general account of ratios, though it falls
short of a definition. Field (1980) describes the comparison of products,
|x ∗ y| < |z ∗ w|, which amounts to the comparison of ratios x

z < w
y (where

x, y, w, and z are either spatiotemporal distances or intervals of difference
according to some scalar quantity).
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like length, mass, volume, or temporal duration.26 Field (1980) describes
how to extend his account to apply to scalar quantities: replace the
spatiotemporal “betweenness” and “congruence” relations with “SC-
betweenness” and “SC-congruence”27 (‘SC’ for scalar). However, the
analogue of Field’s definition schema using these relations does not
avoid the extrinsicality problem. That is, the scalar analogue of (11),

(12)
xyV2zw ↔ ∃u(u is a voluminous body ∧ u is SC-between x and
y ∧ xuCuy ∧ uyCzw).

is not an intrinsic relation. This is because, while the spatiotemporal
relation “between(yxz)” entails that x is a part of physical straight
line yz, its scalar analogue “SC-between(yxz)” merely indicates that
y ⪯ x and x ⪯ z where ⪯ is that quantity’s ordering relation. With no
guarantee that x is part of either y or z, the relation V2(xy) according
to the scalar version of definition 11 will not be intrinsic to x, y, or their
fusion. The same will go for an application of this definition schema to
other scalar quantities, like mass, temperature, length, or area.28

Aside: Just how intrinsic is the the M-R account?
One might wonder if the M-R account faces a version of the ex-

trinsicality worry, insofar as it is taken to apply to macroscopic “solid”
voluminous material bodies like apples, chairs, people, and automobiles.

26. The proponent of Field’s account would likely claim that the spatiotemporal
scalars (length, volume, temporal duration) can be grounded in the right kind
of distance facts. However, this does not yet guarantee that this grounding
story will equip us with an intrinsic definition of these quantity’s metric
relations. Moreover, Maudlin (1993) has argued that, even in spaces where
there are points, there’s good reason to not take distance to be a fundamental
quantity (though some doubt about these arguments have been expressed
by Dees (2015)). Even putting those issues aside, if it turns out that space is
gunky, and lacks points, it would be very implausible that distance is the
fundamental spatiotemporal quantity.

27. If congruence is analyzed as the sharing of intrinsic properties, then positing
a distinct “SC-congruence” will be unnecessary. Cf. section 3.2

28. However, see note 26

Here’s the concern: we ascribe approximate volumes to medium-sized
dry goods like tables or swarms of bees based not on the combining
the volumes of their miniscule parts (which, on an atomic theory of
matter, would be extremely small), but based on the volume of some
salient contiguous, simple, table-shaped region (or, rather, a class of very
similar regions) throughout which those parts are distributed. But, if
the table is composed of only those material parts, then this volume
attribution appeals to a region that the table does not occupy.

I will take it as uncontroversial that the volume of a spatial or
spatiotemporal region is intrinsic to that region.29 Whether the volume
of a particular hunk of matter occupying that region is intrinsic to that
hunk of matter will depend not just on what you think matter is, but
also on your preferred definition of intrinsicality.30

However, I think we can safely set the differences between specific
definitions of intrinsicality aside for two reasons: First, the intrinsicality
intuition is the intuition that the things playing into our physical expla-
nations be features of, or entities involved in the physical phenomena
to be explained. Insofar as the volumes of macroscopic material bodies
make a difference in the physical world, it is the approximate volumes
we ascribe to them based on the regions they trace out (and not the
sum of its microscopic voluminous parts, supposing it has any). And
so the M-R account, on which the volume ratio relations between vo-
luminous regions are genuinely intrinsic to those regions, satisfies the

29. It’s certainly intrinsic according to the definition employed in Lewis (1983b):
“Px is an intrinsic property just in case it supervenes on the fundamental
properties x and its parts instantiate, as well as the fundamental relations
that hold among x’s parts.”, as well as the stricter variant employed by Skow
(2007) “Px is an intrinsic property just in case every quantifier in its analysis
(in fundamental terms) is restricted to x and x’s parts.”. It’s seems similarly
plausible that the volume of a region counts as ‘intrinsic’ on the “property
compatible with being the only thing in the world” (cf. Kim (1982)), as well
as the “non-disjunctive property necessarily shared by any duplicate” (cf.
Lewis (1983a) and Langton and Lewis (1998)) definitions of the term, but I
won’t argue for that here.

30. Regarding the nature of matter, see my discussion of extended simples and
supersubstantivalism in section 1.4. Regarding accounts of intrinsicality, see
note 29.
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spirit of the intrinsicality intuition for medium-sized dry goods insofar
as their macroscopically-relevant volumes depend on those regions.
Again, this is because whenever the volume of a macroscopic material
body is “involved in” a particular physical phenomenon, the volume of
the contiguous bounding region it (partly) occupies is thereby also so
involved.

Second, the intrinsicality intuition is dialectically important because
it distinguishes the M-R account from its competitors: The M-R account
satisfies the intuition; its competitors don’t. But, as we’ve now seen, the
extant competitors to the M-R account (with the partial exception of
Field) don’t merely fall short of satisfying the intrinsicality intuition,
they’re views on which volume ratio relations are radically extrinsic. In
most cases, volume ratio relations were grounded in holistic structural
facts about the global domain of actual voluminous entities (or of all
volume properties, in the second-order case). The extrinsicality of these
theories isn’t anywhere close a borderline case.31 So, even if what the M-
R account achieves falls short of genuine intrinsicality according to the
demands of a specific definition, the M-R account still does much much
better, in this regard, than any available alternative. This is sufficient
for my purposes.

3. A Mereological-Reductive Theory of Volume

In this section and the next, I present a formal M-R account of the
quantitative structure of spatial volume,32 and show how this account
generates definitions of the volume ratio relations. The M-R definitions
avoid appeal to mathematical entities or to material entities outside of
the relata and their parts. I will highlight the importance of volume’s
proper extensiveness in this theory, and make it clear how analogous
M-R accounts for other properly extensive quantities can be constructed.

31. And the radical extrinsicality of this story is the same regardless of whether
the global domain of voluminous entities consists of only spatiotemporal
regions, or only voluminous bits of matter, or both.

32. I discuss some of the complications involved with spatio-temporal (as opposed
to purely spatial or purely temporal) quantities in section 5.2.

3.1 Mereology
This system assumes the axioms of classical extensional mereology

(CEM).33

(P1) Pxx
(P2) (Pxy ∧ Pyz) → Pxz
(P3) ¬Pyx → ∃z(Pzy ∧ z ̸= y ∧ ¬Ozx)

(Sum) ∃z(z ∈ S) →
∃x(∀w(w ∈ S → Pwx) ∧ ∀w(Pwx → ∃y(y ∈ S ∧ Owy)))

Oxy =d f ∃z(Pzx ∧ Pzy)
Cxyz =d f Pxz ∧ Pyz ∧ ∀w(Pwz → (Owx ∨ Owy))

‘Pxy’ reads “x is a part of y”. According to this system, parthood is
reflexive (P1) and transitive (P2). I also assume the principle of strong
supplementation (P3),34 and unrestricted composition: (Sum) says that
for any (non-empty) set of objects, there exists an object, x, which is
their mereological sum. The predicates ‘Oxy’ and ‘Cxyz’ are to be read,
respectively, as “x overlaps y” and “x and y compose z”.

3.2 Shared Properties
On the M-R account, volume is a determinable quantity associated

with a class of fully determinate magnitudes, i.e. intrinsic volume
properties. Since each such property is a fully determinate way of having

33. I’m reasonably confident that it’s possible to get everything we want from
my system using, instead of CEM, a weaker mereology that Varzi (2014) calls
“minimal mereology” (MM). MM replaces (P3) with weak supplementation—
’∀x∀y(PPxy → ∃z(PPzy ∧ ¬Ozx))’. Where ‘PPxy’ stands for “x is a proper
part of y”, i.e. ‘Pxy ∧ x ̸= y’. The reason for this is that the other axioms
in this system will ensure that voluminous objects are guaranteed to satisfy
something equivalent to a restriction of (P3) (even if other objects don’t). It
would also not be difficult to get most of the results we need, including all
of the definitions of volume ratio relations, using a restricted composition
rule (limiting fusions to, say, contiguous spatial regions). Thanks to Achille
Varzi for extremely helpful discussion and advice regarding this issue.

34. The antisymmetry of parthood—i.e. ∀x∀y((Pxy ∧ Pyx) → x = y)—follows
from these axioms.
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volume, an object can instantiate at most one volume property. Let’s
introduce the two-place predicate ‘≈’. x ≈ y just in case x instantiates
the same determinate volume property as y. It can be pronounced more
simply as: “x has the same volume as y”, or “x is as voluminous as
y”. Those who are uncomfortable embracing a realist conception of
properties, or who are sympathetic to comparativism35 about quantities,
may accept a variant of my account on which ‘≈’ is not a derived
relation, but an unanalyzed primitive two-place predicate.36 The rest of
my presentation will be consistent with either approach (that is, I will
not need to make any appeals to volume properties outside of my use
of ‘≈’).

Since the determinate volume properties exclude one another, if x
instantiates a different volume determinate from y, it follows that x

35. Comparativism, in the case of volume, is the view that the determinate
magnitudes associated with the quantity are comparative volume relations
rather than monadic volume properties. Russell (1903) distinguishes between
the “relative” view (comparativism) and the “absolute” view (the view that a
quantity’s determinate magnitudes are monadic properties). Comparativism
about quantity (in particular, mass) has been recently defended by Dasgupta
(2013).

36. The comparativist variant retains many of the advantages of my preferred
view, with two notable exceptions: (1) the variant theory cannot derive (≈
Sym) and (≈ Trans), so has to take them as additional brute axioms; (2)
Volume’s ordering, summation, and ratio relations—which are all defined,
partially, in terms of ‘≈’—will not be internal relations. Internal relations,
recall, are those which depend solely on the intrinsic properties of their
relata. The quantitative volume relations on this variant will be intrinsic to
the system composed by their relata (since they depend on the distribution
of the primitive two-place ‘≈’ relation over that system), but they will
not be internal, since ‘≈’, on this variant, is no longer defined in terms of
sharing intrinsic properties. However, given her aversion to intrinsic volume
properties in general, the comparativist is unlikely to see (2) as a great loss.
I should note, problem (1) here is a much more limited version of the “con-
spiracy of comparative relations” problem recently discussed by Martens
(2022). Likewise, Armstrong (1988) raises (1) as an objection to the compara-
tivist position defended by Bigelow et al. (1988).

doesn’t instantiate the same volume determinate as y. From this, and
the symmetry and transitivity of identity, we can derive:

∀x∀y (x ≈ y → y ≈ x)(≈ Sym)
∀x∀y∀z ((x ≈ y ∧ y ≈ z) → x ≈ z)(≈ Trans)

I will pronounce ‘x ≈ x’ as “x is voluminous” (since x ≈ x just in
case x instantiates a determinate volume property). From (≈ Sym) and
(≈ Trans) we can derive a limited form of reflexivity: if x bears ≈ to
anything, then x is voluminous, i.e.

(≈ Ref) ∀x(∃y(x ≈ y) → x ≈ x)

3.3 Combination Principle
Let me introduce the three-place predicate ‘xy ◦ z’, which stands for

“x and y are put together in the right way and compose z”, or “x and y
concatenate to make z”.37 The definition of ‘◦’ differs between different
quantities. For voluminous objects, all that is required for a and b to be
put together in the right way is for them not to overlap:

ab ◦ c =d f ¬Oab ∧ Cabc

The defined-up ‘◦’ predicate can be used to formulate axioms that apply
to quantities like length or temporal duration just as well as they apply
to volume. That is, while different properly extensive quantities will
disagree about what’s required to be “put together in the right way”,
they will agree about the overall structure of the axioms. Hence, one
could straightforwardly adapt this system to apply to a quantity like

37. I will sometimes write this as ‘◦abc’, ‘◦(a, b, c)’, or ‘a ◦ b = c’. The ‘=’ in the
latter formulation should not be interpreted as the identity relation.
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length, temporal duration, or the invariant relativistic interval, simply
by introducing a different definition for ‘◦’.38

In general, a combination principle encodes the role of ‘◦’ or ‘put
together in the right way’, however it’s defined, in a broader account
of that quantity’s structure. When it comes to the Volume Combination
Principle, or (V-Comb), we encode the role of ‘◦’ as it’s defined for
volume (above) in our account of volume’s quantitative structure. That
is (filling in ‘◦’s definition): if a and b are voluminous, don’t overlap,
and compose c, then c is voluminous.39

(V-Comb) a ≈ a ∧ b ≈ b ∧ ¬Oab ∧ Cabc → c ≈ c

3.4 Sub-Metrical Quantitative Structure
The M-R account defines “a is less voluminous than b”, or ‘a ≺ b’,

and “a is at least as voluminous as b”, or ‘a ⪯ b’ as follows:

a ⪯ b =d f ∃x(Pxb ∧ x ≈ a)(13)
a ≺ b =d f a ⪯ b ∧ a ̸≈ b(14)

That is, a is less voluminous than b just in case they differ in volume
and a has the same volume as one of b’s parts. The M-R account defines
“c is as voluminous as a and b put together” (or “c’s volume is the sum
of a and b’s volumes”) as “there exists some x ≈ a and y ≈ b such that
xy ◦ c”.

38. As well as adopting the appropriately restricted variant of the totality as-
sumption discussed in section 3.5, below.

39. In the general case, the combination principle is this:

(Comb) a ≈ a ∧ b ≈ b ∧ (a, b) ◦ (c) → c ≈ c

3.5 Totality
One reason to choose spatial volume as our example is that the

ordering relation on voluminous objects is, plausibly, a total order. That
is, if a and b are voluminous but don’t have the same volume, then
either a’s volume is greater than b’s or vice versa.

(Totality∗) a ≈ a ∧ b ≈ b → (a ⪯ b ∨ b ⪯ a)

Put another way: for any voluminous a and b, a is either less voluminous
than, more voluminous than, or of the same volume as b. (‘a ⪯ b∨ b ⪯ a’
is equivalent to ‘a ≺ b ∨ b ≺ a ∨ a ≈ b’). Not all properly extensive
quantities satisfy unrestricted totality. While all of them satisfy some
form of a totality axiom, for some quantities their ordering is only total
within certain sub-domains.40 The M-R account should be, and, indeed,
is, applicable to those properly extensive quantities as well.

Expressed in the fundamental, mereological terms of the M-R ac-
count, the totality axiom satisfied by volume says:

(Totality) a ≈ a ∧ b ≈ b → ∃x ((Pxb ∧ a ≈ x) ∨ (Pxa ∧ b ≈ x))

In prose: If a and b are voluminous, then either a has the same volume
as some part of b or vice versa.

3.6 Proper Extensiveness
The axioms (Additivity) and (Prop. Extended) jointly characterize

volume’s proper extensiveness. I’ll discuss them in turn.

a ≈ a ∧ b ≈ b ∧ ab ◦ c →
(Additivity)

∀x∀y∀z
(
x ≈ c ∧ yz ◦ x → (y ≈ a → z ≈ b)

)
40. One such case is the invariant relativistic interval. I discuss how the totality

axiom would be restricted for quantities of this sort in section 5.2.
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(Additivity), takes a bit of unpacking. All properly extensive quanti-
ties are additive: if a and b concatenate to make c, then c’s volume is the
“sum” of a’s and b’s volumes. Importantly, if a and b’s volumes sum to
c’s, then c’s volume cannot be the sum of a’s volume and some volume
other than b’s (just as 6 + 9 = 15 means that 15 cannot be the sum of 6
and some other number ̸= 9). Here’s how this feature is encoded in the
axiom (Additivity): If z is a voluminous object composed of voluminous
x and y, put together in the right way, then either x ≈ a and y ≈ b , or
vice versa (since a and b’s volumes sum to c’s volume), or neither x nor
y share their volumes with a or b.

a ≈ a ∧ Pab ∧ b ≈d →(Prop. Extended)
(a ≈ b∨∃x∃y(x ≈ a ∧ y ≈ y ∧ xy ◦ d))

(Prop. Extended) has two jobs (indeed, my original temptation was
to break it into two distinct axioms). If we take the M-R definitions
on board, then (Prop. Extended) is equivalent to saying that (1) the ⪯
ordering on voluminous objects is transitive, and (2) whenever a is less
voluminous than b, b is as voluminous as a and something else put
together. If a is one of b’s voluminous parts, then anything with the
same volume as b, call it d must have a part with the same volume as a.
If a ≈ b, then this part is d itself; otherwise d is composed of a pair of
voluminous parts, one of which has the same volume as a.

3.7 Within-object Archimedean assumption
Finally, I’ll introduce an assumption that, while not strictly necessary

to obtain all the results we want from this system, greatly simplifies our
presentations of the definitions in the next section. It amounts to the
stipulation that there can be no voluminous entity which is infinitely
more voluminous than some other one. More technically, it says that, if
b is some voluminous entity, then b cannot be composed of an infinite
set of non-overlapping parts, all with the same volume.

b ≈ b ∧ Pab →
(W-O Archimedean)

∀S (S = {x|Pxb ∧ x ≈ a ∧ ∀y ̸= x (y ∈ S → ¬Oxy)} → S is finite)

One interesting consequence of this Archimedean assumption is
that there cannot be a “zero magnitude” of volume. If by “b has zero
volume” we mean that ∀a∀c(ab ◦ c → c ≈ a), then the Within-Object
Archimedean assumption entails that any such b must not be volumi-
nous (i.e. b ̸≈ b).41 This assumption, therefore, implies that points of
space, one-dimensional lines, or two-dimensional planes in space are
quite literally volume-less—they do not instantiate a volume magnitude.
This doesn’t mean that we deny that these entities exist; it just means
we deny that such entities are voluminous (and so aren’t picked out by
phrases like “so-and-so’s voluminous parts”). I could have accepted a
weakened Archimedean assumption that allows for a zero magnitude
of volume, but it would add unnecessary complexity while making no

41. Why? Make the weakest version of the claim that b ≈ b has zero volume,
i.e. that, for some a and c, ab ◦ c and a ≈ c. From this supposition, it’s easy
to construct an infinite set of non-overlapping parts of c all with the same
volume as b:
By (Prop. Extended), since b ≺ c, and c ≈ a, it follows that there exist some
b′ ≈ b and x ≈ x such that xb′ ◦ a. By (Additivity), since c ≈ a and xb′ ◦ a,
it follows that x ≈ a. But this is the very position we started out in! That
is, from the assumption that c can be divided into two, non-overlapping,
voluminous parts, a and b, where a ≈ c, it follows that a can be divided
into two non-overlapping, voluminous parts, x and b′, where b ≈ b′ and
x ≈ a. This means we can repeat this process indefinitely, applying (Prop.
Extended) and then (Additivity) in the same way to get infinitely many parts
all as voluminous as b.
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difference to what the system can prove.42 I discuss a more substantive
way we might weaken (W-O Archimedean) in section 5.1.

4. The M-R account of Volume’s Metric Structure

This section I define a general procedure which, given a voluminous
pair, a and b, determines the M-R account’s definition of the volume
ratio relation that they stand in—i.e. the relation we describe with “the
volume ratio of a to b is 1-to-n” or “b is n-times the volume of a” (for
some real number, n). Neither the procedure, nor the definitions it
generates, will require quantification over anything other than a, b, and
their parts, and they will need to appeal only to mereological relations
and/or ‘≈’.

4.1 Definition of the “taking out” procedure
The first step will be to define a different procedure, which I call

“taking x out of y” for some voluminous x and y, which tells you
how many “copies” of x can “fit inside” y, and whether there’s some
remainder. The ratio procedure, we shall see, is defined in terms of
repeated applications of this procedure.

To “take x out of y” is to determine the maximum number of non-
overlapping proper parts y can be partitioned into such that all (except,
perhaps, one) of those parts bear ≈ to x. That is, whenever we take x
out of y, for x ̸≈ y, the procedure outputs a pair of entities: A part, r, of
y such that r ⪯ x, which we’ll call the “remainder”. The second is an
integer (we’ll call it the “count”), which is the cardinality of a particular
set, S, such that (1) every member of S bears ≈ to x, (2) no member of

42. This would amount to adding an exception just for the zero magnitude: e.g.
we replace (W-O Archimedean) with a disjunction stating (roughly) that,
for every voluminous a and b such that Pab, either the set S (as defined in
the original axiom) is finite or a is such that, for all voluminous x, if xa ◦ y
then x ≈ y. If we were to add this exception, no change would be required
to the expression of any of the axioms. However, the definitions of the two
procedures in the next section will require the addition of a “& so-and-so
is not a zero-volume” qualifier at certain key steps. Cf. (Balashov, 1999) for
some considerations for and against positing a zero magnitude.

S overlaps any other member, (3) y is the mereological sum of all the
members of S ∪ {r}.

We take a out of b, where a ≈ a and b ≈ b, as follows: If b ≺ a, then
there are no parts of b which bear ≈ to a. The output of this procedure
is the integer 0, and the remainder is b. If a ≈ b, then the output of this
procedure is the integer 1 and there is no remainder. b ≈ a so b is the
fusion of 1 copy of a without remainder. The third case, a ≺ b, is the
more interesting one:

a ≺ b. So there exists a part, a′0, of b, such that a ≈ a′0. By (Prop.
Extended), since a ̸≈ b, there exists some x such that a′0 ◦ x = b –
Call it “d1”. By (Totality), either d1 ⪯ a or a ⪯ d1. If d1 ⪯ a, stop.
d1 is the “remainder” of this procedure, and the “count” is 1.

If it’s not the case that d1 ⪯ a, then a ≺ d1. So there exists a part,
a′1, of d1 such that a ≈ a′1. By (Prop. Extended), since a ̸≈ d1, there
exists some x such that a′1 ◦ x = d1 – Call it “d2”. By (Totality),
either d2 ⪯ a or a ⪯ d2. If d2 ⪯ a, stop. d2 is the “remainder” of
this procedure, and the “count” is 2.

Continue this procedure for every dn arrived at in this way. I.e.:

If dn ⪯ a, then stop. dn is the “remainder” of this procedure, and
the “count” is n.
If it’s not the case that dn ⪯ a, then a ≺ dn. So there exists a part,
a′n, of dn such that a ≈ a′n. By (Prop. Extended), since a ̸≈ dn,
there exists some x such that a′n ◦ x = dn – Call it “dn+1”. By
(Totality), either dn+1 ⪯ a or a ⪯ dn+1. If dn+1 ⪯ a, stop. dn+1 is
the “remainder” of this procedure, and the “count” is n + 1.

From this definition, it’s easy to see that taking a out of b has a defined
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output for any voluminous a and b.43 This procedure is unique up to
the volume of the remainder, and taking x out of y, where x ≈ a and
y ≈ b, has the same output (up to the volume of the remainder) as
taking a out of b.

When dn ≈ a, then a “goes evenly into” b—i.e. b can be partitioned
into n + 1-many non-overlapping parts, all ≈ a. This brings us to our
first Lemma, which says that whenever there is a minimal element,44

u, every voluminous entity is the fusion of k non-overlapping parts all
≈ u, where k is some integer.

Lemma 1. If there exists a minimal element, call it u, – that is, if ∃u∀x(x ≈
x → u ⪯ x) – then, for all voluminous b, the remainder dn left after we take
u out of b bears ≈ to u.

Proof. Since dn is part of the output of taking u out of b, it must be
that this procedure terminated with dn. Hence, by the definition of the
procedure, dn ⪯ u. But, by the minimality of u, u ⪯ dn. Hence, by the
definition of ⪯, u ≈ dn.

4.2 Volume Ratio
We use the procedure for “taking x out of y” to define the volume

ratio relations—i.e. those designated by statements like “b is n-times

43. Proof: Suppose a ≈ a and b ≈ b. By (Totality), either a ≺ b, a ≈ b, or
b ≺ a. In the latter two cases, the result is trivial. In the case where a ≺ b,
if the procedure terminates at the n’th step, then (by the definition of the
procedure) b can be partitioned into n + 1 many non-overlapping parts, n of
which bear ≈ to a, and one we’ll call “dn”. In that case n is the count and
dn the remainder output by this procedure. So, for a ≺ b, taking a out of
b can fail to have an output only if there’s no step at which the procedure
terminates. However, if the procedure never terminates, then there exists a
set, S, of non-overlapping parts of b such that ∀x(x ∈ S → x ≈ a) which is
infinite. However, this is ruled out by the Within-object Archimedean axiom.
So the procedure will eventually terminate.

44. Fun fact: We don’t actually need to make a global claim to establish that
there exists a minimal element. Because volume is properly extensive, it will
suffice to show that there exists some voluminous entity which lacks any
parts with different volume. I.e.: ∃u(u ≈ u ∧ ¬∃x(P(x, u) ∧ x ≈ x ∧ x ̸≈ u))
alternatively ∃u(u ≈ u ∧ ∀x(P(x, u) → (x ≈ x → x ≈ u))).

the volume of a” for some n ∈ R and voluminous pair a, b. We will
define a “ratio procedure” which, as I mentioned before, will consist of
repeated application of the taking out procedure: first taking a out of b
and then, if there’s a remainder, taking that remainder out of a, and so
on. Each application of the taking out procedure gets us a better and
better approximation of the ratio of a to b.

After defining this procedure I show how it allows us to gener-
ate the M-R account’s definitions of volume ratio relations, and I’ll
argue that the relations picked out by this procedure are ratio relations
properly-so-called. The relations themselves will not require appeal to,
or quantification over, numbers or other mathematical objects. The M-R
definition will make use of nonnegative integers, but only in the case
where they serve to count the members of some well specified, finite
class of voluminous entities.
4.2.1 The Ratio Procedure

This procedure consists of repeated applications of the “taking out”
procedure. We construct a list of integers K(a,b) = ⟨k0, k1, k2, ..., ki, ...⟩,
which need not be a finite list. Each successive entry, ki, in the list
K(x, y) is determined by the “count” output by each application of
this procedure, as defined above. The “remainder” output by the i-
th “taking out” procedure is used to indicate whether the list should
continue after its i-th member, and, if it should, then that remainder also
serves as one of the inputs for the next application of that procedure.

We want to find the volume ratio between a ≈ a and b ≈ b. To
do this, we perform the ratio procedure on the ordered pair ⟨a, b⟩,
which generates an ordered list, K(a, b) = ⟨k0, k1, k2, ..., ki, ...⟩ (where
k1, k2, ..., ki, ... ∈ Z+ and k0 ∈ Z+ ∪ {0}), as follows:

0. If a ≈ b, then taking a out of b yields a count of 1 and no remainder.
In that case set k0 = 1 and stop. k0 is K(a, b)’s first and final entry. If
a ̸≈ b, proceed to step 1.

1. Take a out of b. This procedure will output a count, f ∈ Z, and a
remainder, call it ‘r1’. By the definition of this procedure, r1 ⪯ a, if it
exists (since, if not, the procedure would not terminate at r1).
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1-(i): If r1 ≈ a, then set k0 = f + 1 and stop. k0 is K(a, b)’s first and
final entry.

1-(ii): If r1 ̸≈ a then r1 ≺ a. In that case, set k0 = f and proceed to
step 2.

2. Take r1 out of a. This procedure will output a count, g ∈ Z, and a
remainder, call it ‘r2’. By the definition of this procedure, r2 ⪯ r1.

2-(i): If r2 ≈ r1, then set k1 = g + 1 and stop. k1 is K(a, b)’s second
and final entry.

2-(ii): If r2 ̸≈ r1 then r2 ≺ r1. In that case, set k1 = g, and proceed
to step 3.

In the general case, the N-th step of the construction of K(a, b) is:

N. Take rn−1 out of rn−2. This procedure will output a count, h ∈ Z,
and a remainder, rn. By the definition of this procedure, rn ⪯ rn−1.

N-(i): If rn ≈ rn−1, then set kn−1 = h + 1 and stop. kn−1 is K(a, b)’s
n-th and final entry.

N-(ii): If rn ̸≈ rn−1 then rn ≺ rn−1. In that case, set kn−1 = h, and
proceed to step N + 1.

There is no guarantee that the ratio procedure will end for any given
a and b. However, this procedure is explicitly defined and so can be
used to generate a determinate ordered list, K(a, b), of integers. The list
K(a, b) is, therefore, defined for any voluminous a and b. In the cases
where this procedure does terminate, it also outputs a “final remainder”
rfinal.
4.2.2 Significance

Observe that, in cases where this procedure terminates, we have a
perfect approximation. That is, a and b are both fusions of some integer
number of non-overlapping parts all ≈ rfinal. Let’s call these integers
p and q, respectively. This means that we can characterize how much
more voluminous b is than a by comparing how many different “copies”
of rfinal can “fit” in each. That is, the ratio of b to a is represented by q

p .

Let ‘Vrat:n (x, y)’ be the two-place relation we attribute to x and y
when we say “x is n-times as voluminous as y”. We now have a way
to determine the ratio between b and a when the ratio procedure for a
and b terminates: where p and q are the integers arrived at according
to the process described in the last paragraph, then b is q

p -times as
voluminous as y, i.e. Vrat: q

p (b, a).
There is another way to arrive at q

p using the list, K(a, b), which
doesn’t appeal to rfinal. Recall that K(a, b) = ⟨k0, k1, k2, ..., kn⟩, where
each ki is a non-negative integer (and is non-zero for i ≥ 1). We can
take these integers and use them to construct what is called a “simple
continued fraction” of the form:

k0 +
1

k1 +
1

k2 +
1

k3 + . . .

+
1
kn

We can write this more compactly as

k0 +
1

k1+

1
k2+

1
k3+

. . .
1
kn

For a ⪯ b where the ratio procedure for a and b terminates, and
K(a, b) = ⟨k0, k1, k2, ..., kn⟩,

q
p

= k0 +
1

k1+

1
k2+

1
k3+

. . .
1
kn

So the list K(a, b), in cases where the ratio procedure for a and b

philosophers’ imprint - 20 - vol. 23, no. 29 (october, 2023)



z. r. perry On Mereology and Metricality

terminates, can be used to characterize the ratio between a and b just
as well as the remainder rfinal. That is, it can also allow us to determine
that Vrat: q

p (b, a). This is good, because in the cases where the ratio
procedure for a and b doesn’t terminate, we do not have a final remainder,
but we do have a (non-terminating) list K(a, b).

In the non-terminating case, we can still use K(a, b) to determine the
ratio between a and b, despite the fact that K(a, b) is an infinite list. In
the cases where K(a, b) is non-terminating, i.e. K(a, b) = ⟨k0, k1, k2, ...⟩,
then we will be able to construct what is called an “infinite simple
continued fraction”.

k0 +
1

k1+

1
k2+

1
k3+

. . .

Infinite simple continued fractions, it turns out, always converge on
particular real numbers. In fact, one very cool feature of continued
fractions is that, defined as I have done so, every positive real number
can be uniquely expressed as a simple continued fraction.45

Each step of the ratio procedure gives us closer and closer approx-
imations to the ratio between a and b. Since, in this case, it does not
terminate, the ratio arrived at is the limit of this procedure. The number
r ∈ R on which each successive step of these fractions converge is
the analogue of our q

p in the terminating case. This means that, when
K(a, b) = ⟨k0, k1, k2, ...⟩:

r = k0 +
1

k1+

1
k2+

1
k3+

. . .

4.3 Volume Ratio Relations
We can now determine the general definition schema for the volume

ratio relations. Recall that, b “partitions into” some class of its parts iff

45. See, e.g., Chrystal (1886) for proofs that any real can be expressed as a
continued fraction, and that simple continued fraction expressions of positive
real numbers are unique.

they are all voluminous, none of the members of that class overlap, and
b is their fusion. The schema is as follows:

Vrat:n(b, a) =d f ∃r1, r2, . . .
(
(b partitions into: k0 parts which

bear ≈ to a, and another part, r1) ∧ (a partitions into: k1 parts
which bear ≈ to r1, and another part, r2) ∧ (r1 partitions into: k2

parts which bear ≈ to r2) ∧ . . .
)

The right side of this definition is precisely the sufficient condition for
the ratio procedure on ⟨a, b⟩ to output the particular list of integers
K(a, b) = ⟨k0, k1, k2, . . .⟩. This definition only involves appeal to a, b and
their parts, and, beyond the mereological relations, only appeals to ‘≈’,
i.e. “instantiates the same determinate volume property as”. Therefore,
the volume ratio relations are intrinsic. Since every positive real number
can be uniquely picked out by the simple continued fractions generated
from a list K(a, b), this definition allows us to associate ordered pairs of
voluminous objects with a unique real number which characterizes their
volume ratio. This schema is a formalized and mereologized version
of the “anthyphairetic ratio” between some pair of objects, and the ratio
procedure is closely related to the process of anthyphairesis.46

4.4 Representation Theorem
I have argued that we can, simply by counting up the right sets of

their parts, match each ordered pair of voluminous objects to a unique
real number. I’ve also suggested that there’s good reason to think these
numbers correctly characterize the physical volume ratio between that
pair. The usual punch-line to an account of metric structure involves
proving representation and uniqueness theorems. The M-R account of
volume’s metric structure, however, does not need to appeal to result
of such a theorem to establish that there are volume ratio relations.
Representation and uniqueness theorems are not necessary to give an

46. Also called “antenaresis” or the Euclidean algorithm. The term ‘anthyphairesis’
as the name of the process of reciprocal subtraction is from the Greek
’anthuphairein’ Cf. (Fowler, 1987, chap. 2).
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account of the quantitative relations we appealed to in the explanations
at the beginning of this paper.

It would be possible to prove representation and uniqueness the-
orems about this system, but not as part of its account of volume’s
metrical structure. Rather, they would show that the physical volume
ratio relations I characterize above imply that these relations can be
faithfully represented by the right mathematical ratios. As such, we will
not need to prove the usual sort of theorem, that starts with only the
ordering and summation relations over the domain of voluminous ob-
jects, and gets to the ratio relations by showing that functions from the
domain to the real numbers which preserve ordering and summation
all agree about certain metric facts.

We, on the other hand, can appeal directly to the volume ratio
relations, whose physical definitions are fixed by the ratio procedure,
and consider whether mappings from objects to numbers preserve
volume’s ratio structure.47 As such, the M-R account grounds metric
structure in a thoroughly unit-free way. That is, we do not need to
specify a particular function, φ, and some arbitrary voluminous object,
u, to serve as the “unit” such that the image of any other voluminous
object is defined in terms of the end result of the ratio procedure u and
that object. Rather, we can express a simple rule which any function

47. There is also a practical reason to move away from a representation theorem
couched in terms of ordering and summation, which stems from the way
I define volume ratios (viz. via a procedure which links voluminous pairs
up to real numbers via continued fractions). The problem is this: Continued
fractions are not amenable to even very simple arithmetic operations. As
such, if we wanted to use the account of metricality to define a function from
objects to numbers and then show that this function preserved ordering
and summation structure, the proof would require an inordinate amount of
complexity. Specifically, the problem is with summation structure. Continued
fractions do not like being added to one another. Seriously, they hate it.
Nobody even knew whether you could do it directly until someone came
up with an algorithm for doing it simple enough to be performed (by
a computer anyway) in 1972, and it is still extremely complicated. (That
someone is R.W. Gosper in: Gosper (1972). “Continued fraction arithmetic.”
HAKMEM Item 101B, MIT Artificial Intelligence Memo.)

φ will satisfy just in case it faithfully represents/preserves volume’s
metric structure:

(RULE): If taking a out of b yields the count k ∈ Z and the remainder
c, then φ(b) = k ∗ φ(a) + φ(c)

What (RULE) does is show a correspondence between certain basic
numerical relations and certain mereological ones. This is important
because the definition of the ratio procedure for a given a and b is
defined entirely in terms of repeated applications of the “taking out”
procedure for various pairs of a’s and b’s parts. What this means is that
the very ratio procedure defined in the previous section, combined with
(RULE), will be able to provide a full specification of the numerical ratio
between the numbers that a function must assign to a given voluminous
pair, which is provably identical to the number which characterizes the
volume ratio between that pair.

That is, this rule, while simple in expression, turns out to allow us
to prove what I call the Direct Ratio Theorem for volume:

Direct Ratio Theorem. Every function φ : V 7→ R+ satisfies (RULE) if
and only if:

For all a, b ∈ V, Vrat:n (b, a) iff φ(b) = n ∗ φ(a).

Moreover, for any pair of functions φ and φ′ which both satisfy (RULE),
there exists some m ∈ R+ such that, for all x ∈ V:

φ(x) = m ∗ φ′(x)

Where m is such that, if there exists some u, v ∈ V where φ(v) = φ′(u), then
Vrat:m (u, v).

Rather than bothering with ordering or summation structure, this
theorem concerns ratio structure directly. The proof of this theorem
requires no postulation of an arbitrary unit. It directly concerns the
feature which all such functions must have if they are to preserve the
ratio structure of the voluminous entities. I maintain (though there is not
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enough room to formally demonstrate it here) that the system presented
in this section is rich enough to prove the Direct Ratio Theorem.48

5. Conclusion

We want to understand what it is about the physical world that our
mathematical representations pick out, and what it is about the world
in virtue of which these representations are reliable. This is useful not
just to our understanding of scientific practice, but also to a deeper
understanding of the physical “quantitative structure” that we often

48. In many ways, the previous section could be construed as a sketch of the
relevant steps of that proof. Specifically, demonstrating that the taking-out
procedure can be performed for any pair of voluminous entities, and that
the results of this procedure—an integer “count” and a voluminous object
“remainder”—represent the number of times one volume can be “subtracted”
from the other until the remainder too small to subtract from anymore. If
we assign numbers to voluminous entities in accordance to (Rule), then
whatever number we assign to a, φ(a), must be such that the number
assigned to b, φ(b), is equal to the sum of k multiplied by φ(a) and φ(c)
where k is the count and c the remainder.
The ratio procedure, as we’ve defined it, corresponds to the process of
repeated “reciprocal sub-traction” used to determine anthyphairetic ratios.
As I sketch in Section 4.2.2, above, the sequence of counts will uniquely
pick out a simple continued fraction. Since the simple continued fraction
expressions of positive real numbers is unique, see Chrystal (1886), then this
means the ratio procedure performed on a given pair, a and b, will uniquely
pick out a specific ratio (viz. the ratio between that number and 1). If we
assign numbers to voluminous bodies in accordance with (RULE), then the
“subtraction” here lines up with arithmetical subtraction, and applying the
taking-out procedure reciprocally, subtracting the previous remainder from
the previous body being “subtracted”, and so on, will mean that that same
simple continued fraction generated by this procedure will determine the
arithmetical ratio between φ(a) and φ(b), see Fowler (1987). Therefore, so the
argument goes, any function from objects to numbers that satisfies (RULE)
will map any voluminous pair to numbers whose arithmetical ratio is the
same as that pair’s volume ratio.
I think this can be shown more rigorously than even what I’ve presented
in this paper so far. However, to prove this with full generality, we would
also need to show that the taking-out procedure really is unique up to the
volume of the remainder, and that there will always exist mappings from
voluminous objects to numbers that satisfy (RULE), no matter how volume
properties are distributed, and so on. Such a proof would require quite some
space, and hanc marginis exiguitas non caperet.

engage with only via a mathematical surrogate. I’ve argued that, for
properly extensive quantities, we can give a Mereological-Reductive ac-
count of their quantitative structure. This account is necessary, and gives
reductive definitions of the relations which constitute that structure
according to which those relations are intrinsic.

Here I’ll clarify some points set aside during presentation of the
formal M-R account for volume, then conclude with a discussion of
the quantities left out by the M-R account. I outline how the view
established in this paper can help us make strides towards an account
of their quantitative structure.

5.1 Archimedean Assumption
One might object that this account does rely on a contingent assump-

tion about the structure of the domain after all, since I assume that the
world is Archimedean. However, there are two reasons this assumption
is acceptable. The first is that the “Within-object Archimedean prop-
erty” is still an intrinsic assumption. It says, roughly, that for any two
voluminous a and b, there is always a finite number of non-overlapping
copies of a that “fit” in b, and vice-versa. This basically amounts to the
assumption that there are no pairs of voluminous objects that stand in
what we might describe as an “infinite ratio”. Since the focus of this
paper is on metricality, it makes sense to simplify things for ourselves
and rule this out.

However, this Archimedean assumption is not one that this system
genuinely needs, even though it’s a reasonable assumption to make
about the actual world. That is, if we were to drop this assumption,
we could still recapture many of the results of the view. The sort of
“ratio” relations we would be able to define in the non-Archimedean
case would correspond to something over and above what we think
of as ordinary metric structure. The right representational tool would
likely be some sub-structure of the surreal numbers. I think the M-R
account could be extended in this way, though I won’t argue for this in
detail.
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The way to go about it, I think, would be to define an equivalence
relation over the quantities, such that each equivalence class contains
all and only quantities which bear finite ratios to one another. We could,
for instance, do this by way of something like the taking out procedure:
for every x ≈ x and y ≈ y, x and y are “finitely comparable” iff there
exists an n ∈ Z+ such that either x ⪯ y and y can be partitioned into, at
most, n non-overlapping copies with the same volume as x, or y ⪯ x
and x can be partitioned into, at most, n non-overlapping copies with
the same volume as y.

The Within-object Archimedean assumption will hold within each
equivalence class carved out by this relation, and so the M-R account,
unmodified, will apply to them. Ratios within equivalence classes, then,
will be finite and defined in the normal way. Ratios between voluminous
entities which are not finitely comparable would be infinite. We could
just define “infinite ratio” to be the failure of finite comparability. Via
the ordering we could define two kinds of infinite ratios (intuitively
“infinitely-many-times more voluminous than” and “infinitely-many-
times less voluminous than”). It’s not clear if much else would need
to be done to accommodate the non-Archimedean case, but my guess
is that the M-R account of volume’s quantitative structure has the
resources to capture it.

5.2 Totality
Volume is a properly extensive quantity whose ordering satisfies

an unrestricted totality condition. I mentioned above that there are
quantities which do not satisfy totality. Consider, for instance, the
case of the invariant relativistic interval, “I”, in special relativity. If we
understand the interval as measuring something like the spatiotemporal
“length” of a path through Minkowski space time, then the quantitative
ordering relation is not total over the domain of all spatiotemporal
paths. No space-like path, i.e. a path composed of events which are
each at space-like separation from all of the others, is either shorter or
longer than any time-like trajectory connecting two time-like separated

events.49 On the various ways I is represented, numerically, space-like
paths are assigned negative (or imaginary) numbers, while time-like
ones are assigned positive (or just real) numbers.

The ordering relation does apply, however, within each sub-domain
(i.e. of all the time-like trajectories, or of all the space-like paths) and,
indeed, the relation is total. So, in these cases, while I is, plausibly,
a properly extensive quantity that does not satisfy (Totality) in gen-
eral, there are analogues of the axiom which are satisfied by certain
sub-domains. Within those sub-domains, ratio relations will be defin-
able and faithfully representable with the right mathematical structure.
These ratio relations will remain silent on the relationship between a
time-like trajectory and a space-like path (since the ratio procedure for
such a pair will be unperformable), but, in such a case, that’s exactly
what we want.50

5.3 Beyond Properly Extensive Quantities
From the start (see the discussion at the start of Section 1) I have

made it clear that, on the whole, the alternate theories of quantity
in the literature are more general than the M-R account, in that they
apply to more quantities. The M-R account has many advantages, but
these advantages only extend as far as the properly extensive quantities.

49. Indeed, even a classical version of spatiotemporal length would obey similar
restrictions. In the classical space-time, paths which cross simultaneity slices
(without doubling back) would have a spatiotemporal length measurable
in units like seconds or years, while paths wholly contained within a slice
have spatiotemporal length measured in meters, or feet. Within each of these
domains the ordering is total, but there are no ordering relations between
members of either domain—a 5 meter path is neither longer nor shorter
than a 12 second one.

50. The set of light-like trajectories pose an independent difficulty, since, on most
numerical representations of I, every such path is assigned I= 0, despite
the fact that, in a very real sense, proper sub-intervals of these paths are
genuinely “shorter” than the paths of which they are a part (even though
there are no length ordering facts about any light-like trajectories that don’t
completely overlap). I think there are things to be said here, and an account
of quantitative structure in terms of mereology will contribute greatly to our
understanding of these issues, but a discussion of that here would take us
too far afield.
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Moreover, there’s no prospect to tweak the M-R account to generalize
it, since the view crucially depends on a mereological feature that
quantities like mass or temperature do not have. One might read this as
a (perhaps defeasible) disadvantage of my account. I think this would
be a mistake. Generality is a good-making feature of a theory insofar
as we want to give a unified account rather than a disjunctive one. But
a unified account is valuable only to the extent that it does not paper
over metaphysically important distinctions.

For the M-R account, the restriction to properly extensive quantities
is not a handicap of the view; it’s an explanation of what it is about
these quantities that grounds their physical quantitative structure, and
of what about them makes it such that this structure is faithfully repre-
sented by a given bit of mathematics. Losing the restriction to properly
extensive quantities means losing the explanatory strength of the M-R
account. The M-R account tells us about how the metrical structure of
certain quantities is grounded in the kinds of things they are. That it does
not extend to other kinds of quantitative properties, whose relationship
with the physical world is different, merely shows that the explana-
tion the M-R account provides really does turn on the characteristics I
identify (namely, the proper extensiveness of these quantities).

Moreover, I think the M-R account may help us make strides in the
direction of an account of the structure of non–properly extensive quan-
tities (i.e. merely additive or intensive quantities) as well. The reason
for such hope is that physical quantities do not exist in isolation, they
influence, interact with, and depend on other aspects of the physical
world and other physical quantities. As such, there’s prima facie jus-
tification for a “hierarchical” theory of quantity, on which the metric
structure of one quantity may be grounded in/defined in terms of the
metric structure of another quantity (spatial length or volume, perhaps),
which is already established via independent means (e.g., by the M-R
account presented here).

Burgess (1984) and (1991) demonstrates that such a theory is for-
mally viable, by developing an account of Newtonian mechanics which
generates the ratio structure of mass (and others scalars) from the dis-

tance ratios between collinear points, which is defined independently.
Indeed, we may take a cue from Mach (1893) and consider whether
there are genuinely physical connections51 between the quantities, like
dynamical behavior, which might give us a means to ground the quan-
titative structure of one in the structure of the other. That is, just as
Mach attempted to define mass in terms of acceleration (or tendencies
to acceleration), we might take mass ratios as determined by accelera-
tion ratios (which, in turn, are grounded in the structure of properly
extensive quantities like length or temporal duration). This would allow
us to give a hierarchical account of mass’s metric structure in terms of
the metric structure of properly extensive quantities.52
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