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Infinite Population Models and Random Drift

Marshall Abrams*

Philosophers of science sometimes seem to imply that there are evolutionary models in
which a counterfactual infinite population of organisms plays a crucial role. As is sometimes
noted, this idea is incoherent if “infinite population” is understood literally. This paper uses
case studies of modeling in evolutionary biology to examine roles that “infinite population”,
and assumptions about random drift, play in modeling practices. Sometimes various effects
of the absence of drift are understood as having to do with limits as population size goes
toward infinity; in other cases these effects are conceptualized as having to do with large
population sizes. Some models make assumptions about population size and effects of drift
that might seem inconsistent: in some cases drift is included in part of a model, but excluded
in another, or excluded even though population size is treated as finite. Because of such
facts, I argue that there is no fixed set of assumptions associated with drift or its absence, and
that there is no clear meaning for “infinite population” and similar terms. Rather “infinite
population” is figurative language that is merely associated with various assumptions about
the absence of drift.
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1 Introduction

Philosophers of science often write as if evolutionary biology includes models that treat evolution
as occurring in infinite populations. This, of course, doesn’t mean that philosophers think that
there are in fact populations that are infinite in size. Rather, what some philosophers seem to say
is that evolutionary biologists can and do construct models in which the number of organisms
in the model is countably infinite,1 and that it is useful to model evolution in this way. This

1. A countably infinite set is one in which each member can be paired one to one with the positive integers, with
no elements left over (example: the even positive integers). Continuous sets such as the real numbers between 0
and 1 are uncountable. A simple argument (Cantor’s diagonal argument) shows that if one tries to pair all of those
numbers with the positive integers, an infinite number of real numbers will be left out.
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treats an infinite population as an idealization—an assumption that is false of actual populations,
but useful for understanding their properties. The idealization is useful, it’s thought, because
a population that is infinite in size would be one in which there was no genetic drift. Thus
an infinite population can be used to model evolutionary influences other than drift—such as
natural selection—without considering the influence of drift.

It’s certainly correct that models that biologists describe as referring to infinite populations
are extremely useful—as illustrations below show—and that the main reason that they are useful
is because they model evolution without the influence of drift. However, there is significant
vagueness in many philosophers’ characterization of “infinite population”models and the assump-
tions on which these models depend. Although some philosophers give the impression that
“infinite population”models are unrealistic simply because infinite populations of organisms don’t
actually exist, the idea of a population with a countably infinite number of organisms is in fact so
incoherent that the idea, as such, can play no role in evolutionary biology. What biologists mean
by talk of infinite populations is therefore subtly different from the idea of evolution in infinite
populations per se. What is meant is shown by the roles that so-called infinite populations play
in practice.

The structure of the rest of the paper is as follows. First, since random drift, infinite sets, and
limits have played a number of roles in a philosophy of science, I want to forestall confusion
or disappointment about the the focus of the paper. The following two subsections of this
introductory portion of the paper clarify what my goals are—and are not. Then section 2 illustrates
the kind of statements about infinite populations that I think are in need of clarification. Section 3
provides several conceptual and theoretical clarifications concerning “infinite population”models.
I explain why one central idea of an evolving population of countably infinite size is incoherent
and can have no use in evolutionary biology.2 I use arguments by John Norton to clarify this
point, and distinguish related but different ideas about populations with infinite numbers of states.
Section 4 discusses a series of case studies of models from population genetics.3 These models
illustrate roles that infinite population models and closely related models play in evolutionary
biology. Some of the models are a little bit complicated, but that’s the nature of contemporary
evolutionary biology, and important points would be difficult to illustrate with fewer details. I
try to describe the features of the models that matter to my arguments as simply as possible,
however. Section 5 discusses several ways of understanding “infinite population” and roles of drift
in the models discussed in section 4. In the end, I argue that “infinite population” and related
terms are generally used figuratively, and are associated with a variety of potential consequences
of drift and arguments concerning it. This view accommodates details of practice that don’t seem
to be handled by other non-literal treatments of “infinite population”. I suggest that more refined
analyses would be possible, but would require varieties of research on “infinite population”models
that go beyond what has been undertaken previously.

1.1 Goals

One purpose of this paper is to provide a clearer characterization of what biologists’ talk of
infinite populations means in practice, and to explore different ideas and strategies associated with

2. This point has been discussed more briefly by Abrams (2006) and Strevens (2019).
3. The models I discuss come from both primary sources and textbooks. Some philosophers of science seem to

disdain analysis of claims from textbooks. Science textbooks can be poor guides to the history of science, but this
paper is about contemporary scientific understandings, and both primary sources and textbooks provide information
about contemporary thinking. One might think that textbooks are poor sources because authors sometimes say
things in overly simplified ways for the sake of pedagogy. However, whether discussing textbooks or primary sources,
one has to go beyond that what scientists say they are doing, and look more deeply at their practices.
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“infinite population” talk in evolutionary biology. Though philosophical discussions of so-called
(countably) infinite population models correctly treat these models as assuming the absence of
genetic drift, these discussions usually fail to make clear that an infinite population is neither a
necessary nor sufficient condition for the absence of genetic drift. This follows from the claim
below that infinite populations, as such, can play no role in evolutionary modeling. Given that
it is not the idea of evolution in an infinite population that supports an assumption that drift
is absent, it’s valuable to explore exactly what biologists do mean when they speak of infinite
populations. It turns out that there are subtly different roles that assumptions about drift play in
“infinite population”models. The case studies I present illustrate some of these roles. My general
suggestion will be that “infinite population” talk among biologists is merely idiomatic—and that
sophisticated evolutionary biologists implicitly know this. “Infinite population” assumptions
have different consequences in different cases, but they at least function as ways of stating that
particular effects of random drift are not represented in a given model. A further purpose of the
paper is to illuminate and discuss ways of understanding different roles that assumptions about
drift or its absence play in models of evolution. Though the idea of an infinite population as such
is incompatible with even hypothetical evolution, other kinds of apparent inconsistency within
models can be quite useful. For example, I’ll look at a model in which drift is described as both
present and absent, though in different parts of themodel. I’ll suggest that suchmodeling practices
are fruitful, and that phrases such as “infinite population” need not have clear, unambiguous
meanings in order to be useful in evolutionary biology.

1.2 Non-goals

Given (sometimes reasonable) misunderstandings or unfounded expectations about earlier ver-
sions of this paper, I suggest readers at least skim this section—which summarizes issues that are
not part of the focus of the paper.

It’s not about the math per se While one of my goals is to elucidate ways that talk of infinite
populations depends on well-known mathematical facts about models and probability, I have
nothing very novel to say about the mathematics as such. I intend my discussion to clarify
and illuminate subtleties of relationships between infinite population talk, modeling, and large
populations in ways that I believe are illuminating for philosophers of science and some biologists.

It’s not historical The focus of this paper is on illuminating recent scientific practice; it’s not
a historical study. There is a valuable body of historical and philosophical work on modeling,
statistical methods, and empirical applications in evolutionary biology during the early and
middle years of the 20th century. Some of this research concerns roles of large populations in
one way or another, and some of it touches on talk of infinite populations. Historical work on
this period wouldn’t in itself tell us what parts of the earlier biological research were relevant to
contemporary biology. For example, if it’s true, as is sometimes suggested, that Fisher discussed
infinite population models in early 20th-century works (such as Fisher, 1922, [1930] 2000),4
one can’t simply assume that meanings and uses of contemporary talk of infinite populations
today are fixed by Fisher’s (cf. Kuhn 1962).

4. Despite a great deal of historical and philosophical discussion related to Fisher’s and his contemporaries
ideas about very large populations (e.g.,Wimsatt 1981; Provine 1986; Turner 1987; Hodge 1992; Morrison 2000,
2009, 2015; Skipper 2002; Plutynski 2004, 2005a,b, 2008; Winther et al. 2013, 2015; Ishida 2017), as well as some
attributions by biologists (Kimura and Crow, 1964, 728), my own reading of Fisher suggests that he did not discuss
infinite biological populations in the papers usually cited in support of this claim. That is a topic for a different
paper, however.
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It’s not about philosophical drift/force debates This paper is not primarily a contribution to
ongoing philosophical debates about what drift is, whether it exists, or exactly how it is or is
not related to natural selection. In philosophy of biology, some discussions of drift are framed
as focused on whether and in what sense drift is an evolutionary “force”.5 There are important
issues here, and some of my thoughts about them have appeared elsewhere (Abrams, 2007, 2023).
In this paper, I’ll simply assume that there’s something called drift that involves random effects,
so that I can discuss ways that evolutionary biologists model it. I’ll take for granted here that
it’s useful to discuss distinct types of causal factors influencing evolution, and I’ll sometimes use
“force” as an informal term for such factors, as many biologists do.

It’s not an intervention in modeling debates There are two areas of philosophical research to
which this paper will rightly seem especially relevant. First, some philosophers of science have
developed general views about what scientific models are (see, e.g.,Weisberg 2013; Gelfert 2016),
for example that they are fictions of a certain kind (see, e.g., Suárez 2009a). Second, there has
been a great deal of discussion of models incorporating infinite structures or limits, mostly in
physical sciences (e.g., Fletcher et al. 2019). My discussion may have implications for such areas,
and I’ll mention a few connections to relevant literature here and there. However, given the
length of this paper, I want to leave extensive discussion of work in these areas for other papers.
My theorizing here will remain close to the texts of the case studies I discuss and the variety of
relationships toward the absence of drift that they illustrate.

It’s not a criticism of biological practices It should be clear below that nothing I say is intended
to criticize the models that biologists have been using. I assume—with good reason, I believe—
that these models are useful tools, are not used in incoherent or inconsistent ways, and that they
can be used to gain insight or test hypotheses about real populations. This assumption is the
starting point of this paper. On the other hand, I don’t believe that everything scientists say
about their practices is literally true, but that need not be seen as a failing. Sometimes one must
closely examine ways that scientific tools are used in order to understand the truth about them.
Occasionally it turns out that this truth conflicts with what some scientists seem to say about the
tools. But when scientific practices are coherent and fruitful, leading to increases in knowledge,
it is probably not a fault in scientific practice that relatively loose language has played a useful
role in that kind of success. Thus, I hope that scientists reading this paper will bear with me if
it sometimes looks as if I’m trying to undermine or misinterpret valuable ideas or practices in
evolutionary biology. My goal is to try to give a clearer understanding of those valuable ideas
and the practices they depend on.6

5. The relevant literature on evolutionary forces in philosophy of biology is ongoing and multifaceted, and
overlaps with debates about other issues, including how to define fitness, what natural selection is, and what drift
consists in (e.g., Bourrat 2018; Clatterbuck et al. 2013; Clatterbuck 2015; Gildenhuys 2009; Huneman 2012;
Matthen 2010; McShea and Brandon 2010; McShea et al. 2019; Millstein 2002; Millstein et al. 2009; Otsuka 2016;
Godfrey-Smith 2009b; Pence 2017, 2021; Plutynski 2007; Ramsey 2013; Shapiro and Sober 2007; Walsh et al.
2017).

6. One might wonder why I suggest that philosophers’ statements about infinite populations are in need of
clarification,while allowing that it’s OK if biologists’statements about infinite populations are vague and even literally
false. The difference is that biologists are engaged in modeling practices that go beyond what they sometimes say, and
so some of what scientists say along the way is less important than their practices and the conclusions those practices
justify. Philosophers of science, however, are engaged in understanding scientific concepts,methods, practices, theory,
and how these affect justification and our understanding of the world. In that context, understanding of nuances of
scientific theory and practice is a component of the main goals of research, so it’s important to clarify potentially
misleading language.

� open access - ptpbio.org

http://ptpbio.org


abrams: infinite populations 5

2 Philosophers on infinite populations

I said above that I think that philosophers have written about “infinite population”models in
ways that are somewhat vague. Because certain kinds of claims about infinite populations are so
routine, it will be helpful to illustrate exactly what I mean. I’ll italicize phrases that seem to imply
that models themselves incorporate infinite populations—i.e., that the models treat populations
represented within the model as literally infinite.

Angela Potochnik (2017, passim) uses infinite population models as one of her paradigmatic
illustrations of an idealization—again, an assumption of the model that is known to be false of
systems that are modeled (55).7 Potochnik writes, for example, that “Representing a population as
infinite in size,… can be epistemically acceptable when researchers want to understand certain
other features of these phenomena” (99). Margaret Morrison wrote that the Hardy-Weinberg law
“… relates allele or gene frequencies to genotype frequencies and states that in an infinite, random
mating population, …” (2015, 35f ). Michael Weisberg writes that “the entire mathematical
argument [in a paper by Karlin and Feldman] is made in terms of extremely general properties of
infinite populations”(Weisberg, 2013, 65). Elliott Sober uses the idea of infinite population models
in evolutionary biology for a similar purpose, and says that “evolutionary biologists consider
models that assume that populations are infinitely large” (2008, 80). One kind of implication of
the arguments below is that contrary to what Potochnik, Morrison,Weisberg, and Sober wrote,
scientists do not represent “a population as infinite in size” (Potochnik), the Hardy-Weinberg law
does not make a claim about would happen “in an infinite …population” (Morrison), Karlin and
Feldman did not make an argument “in terms of …properties of infinite populations” (Weisberg),
and that biologists do not “consider models that assume that populations are infinitely large”
(Sober). Every one of these statements, understood literally, is false, I’ll argue. I am not saying
that it is false that actual populations are infinite—it’s obvious that they are finite. All of the
authors quoted know this. What I am saying is that it’s false that the models represent evolution
using the idea of an infinite population of the kind to which these authors’ statements allude. (In
section 3.3 I mention different sorts of models that one might refer to as “infinite population”
models.) And it’s false that the idea of such an infinite population plays any role in a model
of evolution or in details of how it is used. It’s possible that that these authors know this, and
intend a non-literal reading of their words, but if so their language in these passages obscures
that point.8 Most other philosophical discussions of “infinite population”models I’ve found,
with exceptions noted below, exhibit similar problems. My hope is that this paper will show that,
at the very least, additional subtlety about “infinite population” talk is useful.

It’s worth looking at a more specific claim that Potochnik made, which shows the apparent
importance of the idea of an infinite population in some perspectives. Potochnik wrote that

Evolutionary game theory models hardly ever specify that the population is infinite
in size. Instead, this idealization is generally left implicit. Nonetheless it is a
requisite assumption whenever genetic drift is not taken into account. Any time

7. Norton’s (2012; 2014; see below in §3.2), Godfrey-Smith’s (2009a), and Appiah’s (2017) similar uses of
“idealization”are related to but not equivalent to the Sober/Weisberg/Potochnik sense (Weisberg 2013, 98; Potochnik
2017, 55, passim; Sober 2008, 80) that I adopt here (except where noted). Morrison’s (2015, 20) definition of
“idealization” is different from the Sober/Weisberg/Potochnik concept.

8. Sober plausibly intends a non-literal reading in the quotation above, since in his earlier classic The Nature of
Selection, he wrote that “… the meaning behind the idea in population genetics that models in which selection acts
alone are described presuppose infinite population size” (Sober, 1984, 44) is that, in the limit as population size
increases, the values of probabilities in terms of which drift is quantified go to zero (see also 110). Sober’s claim, that
talk of “infinite populations” expresses the idea the influence of drift goes to zero as population size increases without
limit, is one of those I discuss below. I’m not aware that the other authors quoted gave this kind of clarification.

� open access - ptpbio.org

http://ptpbio.org


abrams: infinite populations 6

drift is neglected, the population is represented as if it were infinite. (Potochnik,
2017, 55)

Notice that what Potochnik claims is that if drift is neglected, then “the population is represented
as if it were infinite” (my emphasis). I agree that when drift is left out of a model, it is sometimes
said that it makes use of an infinite population. My claim will be that a biological population is
never represented as, taken to be, treated as, etc., being (countably) infinite. Further, Potochnik
says that this is a “requisite” assumption when there is no drift, suggesting that a necessary
condition for the absence of drift is that a population is infinite. One of my points will be that
an infinite population can’t be a necessary condition for the absence of drift, because the idea of
evolution in an infinite population is incoherent. Drift can be neglected in a model even though
the population is treated as finite.

3 What infinite population models are, and are not

3.1 Why there is no evolution in (countably) infinite populations

Let’s start with some basic terminology. An allele9 is a genetic variant at a particular locus, a
location on a chromosome. Some organisms in a population may have one or more other alleles
at the same locus. We can also focus on genotypes, combinations of alleles at one or more loci, or
even phenotypes—traits—if they can in some sense be transmitted from one organism to another.
I’ll take natural selection to involve probabilities of changes in frequencies of such things in a
population. A standard claim is that what is selected for has a higher probability of increasing
in frequency than other mutually exclusive alleles/genotypes/phenotypes if no forces other than
selection are acting. Compare natural selection with random drift, which is inversely related to
population size:10 The smaller the population, the more that drift acts to add randomness to
outcomes, for essentially the same reason that smaller samples have higher variance. Pure natural
selection is known as a “deterministic” force that acts alone when a population is infinite; it
is adulterated by drift when the population is finite.11 Here is a quotation from a population
genetics textbook that illustrates some of these ideas:

Unless some of the parameters, such as the selection coefficients and mutation rates,
required to specify the above evolutionary forces fluctuate at random, these forces
will be deterministic. In a finite population, however, allelic frequencies will vary
probabilistically because of the random sampling of genes from one generation to
the next. This process is called random genetic drift, random sampling drift, or simply
random drift. (Nagylaki, 1992, 3, emphasis mine except in the last sentence)

Even without understanding all the technical terms, one can see that Nagylaki contrasts “deter-
ministic” forces with what happens in a finite population, seemingly implying that deterministic
forces would be what one would get in an infinite population. Nagylaki’s statement suggests
that in an infinite population, natural selection (whose strength can be measured by selection

9. This is one of several meanings of “gene”.
10. Or to “effective population size”, a concept that allows one to extend the use of certain mathematical models

to a variety of realistic situations. Nothing will turn on this distinction below. In particular, in many—probably
most—modeling contexts, population size increases without bound if and only if effective population size does.
11. Natural selection is never deterministic in a strict, physical manner, even if we understand infinite populations

in terms of limits (see below). For example, as population size 𝑁 → ∞, the probability that the most fit trait will go
extinct goes to zero, yet it never becomes impossible for the trait to go extinct: the set of scenarios in which the trait
goes extinct is not empty. Deterministically produced effects, in this sense, need not occur (e.g., Sober 1984, 111).
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coefficients) and mutation (whose strength is measured by mutation rates) act to change or
maintain changing (relative) frequencies in a biological population in a deterministic way. When
a population is finite, however, random drift introduces probabilistic variation in frequencies.

All the same, it requires only a little thought to see that the idea that of natural selection or
mutation-caused changes in an infinite population is absurd. As I remarked earlier, this point has
nothing to do with the fact that no actual biological population is infinite (e.g., Plutynski 2004;
Giere 2009; Matthewson and Calcott 2011), nor that as a representation of a finite population,
an infinite population model would attribute false properties to it (Potochnik, 2017). Since
population genetic models are nearly always intended as approximate characterizations of their
targets, and may involve a number of idealizations, the fact that an infinite quantity is used to
model a large one need not in itself be problematic.

However, as Strevens (2019) and I (Abrams,2006) implied earlier, the only relative frequencies
definable in a (countably) infinite population are 0 and 1. For example, how many elements
from an infinite set are needed to give us a relative frequency of 1/2? If we’re willing to consider
arithmetic operations involving infinity at all, we should say that half of infinity is infinity, and
that for any finite number 𝑛, 𝑛/infinity = 0. However, infinity/infinity is undefined, in general.
So there is no subset of elements of an infinite set whose relative frequency is 1/2. The same
point can be made about any number greater than 0 and less than 1. Yet evolution has to do
with changes in frequencies of types—usually frequencies other than 0 and 1. Thus evolution in
a countably infinite population makes no sense.12 Again, the point is not simply that a model
that supposedly represents evolution in an infinite population represents the world falsely. It’s
not even that the idea of evolution in an infinite population is internally inconsistent, although
that might be enough of a problem. The point is that there is simply no way to represent an
absolutely central idea of natural selection—the possibility of change in relative frequency—in
an infinite population. There is no way that a model in which there is supposed to be evolution
in an infinite population, as such, can do any work in helping us to understand evolution. (“As
such”, because I’ll suggest below that there may be less central, informal roles that ideas about
infinite populations do play.)

3.2 Norton on idealization

Norton’s distinction between approximation and idealization in physics provides a useful per-
spective on talk of infinite populations in evolutionary biology. For example, Norton writes:

An approximation is an inexact description of a target system

e.g., of a real-world system. On the other hand, an idealization (in a different sense than defined
above)

is a real or fictitious system, distinct from the target system,…

such that
12. There are also models known as “infinitely many sites” and “infinitely many alleles”models (e.g., Ewens 2004).

In an infinite sites (alleles) model, it’s assumed that the same locus (allele) never appears more than once in the
model. What makes these models work is not even that the number of loci or alleles is large, let alone infinite;
it’s simply that there is always another locus (allele) available. The models don’t require a change of frequencies
in an infinite set, so the fundamental problem with the idea of an infinite population model is absent. Moreover,
the papers (Kimura, 1969; Kimura and Crow, 1964) that introduced these models (Tajima, 1996) focused on finite
populations. A more recent treatment in an advanced textbook (Ewens, 2004) usually assumes a finite population in
these models as well. See also note 38.
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an exact description of the [real or] fictitious system for aspects of interest turn
out to provide an inexact description of the target system. (2014, 199, emphasis in
original)

Thus, an approximation is a statement or a collection of statements that describe(s) a system in a
way that is not fully accurate, while an idealization, in Norton’s sense, is a second system, perhaps
imaginary, whose precise description would provide an approximation for a real system. Norton
points out that the fact that a system has an idealization implies that it has a corresponding
approximation, but that the reverse implication need not hold.

One of Norton’s illustrations of this distinction uses a model of a reversible process in
thermodynamics, which represents heat as being transferred without an increase in entropy
(Norton, 2014).13 In the model, one can let the temperature difference between two objects go
to zero while simultaneously letting the elapsed time go to infinity. The model is reasonable
for all nonzero values of temperature difference and all finite values of time as the limits are
approached, but the idea of a system in which these limits are actually achieved is “nonsense”
according to Norton (2014, 202). In such a system, basic physical principles would imply that
the amount of heat transferred was represented by zero times infinity, an undefined quantity.
This is why Norton calls the idea of a system in which the limit is actually achieved is nonsense.

We might apply Norton’s distinction to countably infinite populations in this way: An
infinitely large population of organisms in which allele frequencies (for example) can change over
time might be an idealization, if it could possibly exist. However, it can’t. It would have to have
an impossible combination of properties.14 We could still say that phrases like “infinitely large
population” provide ways of identifying models that are approximations to large populations.
These models include, for example, those in which a real population is large enough that it can
treated as if frequencies of alleles in one generation directly determine the frequencies of alleles
in some later stage of a model.

3.3 Other “infinite population” models

Some models could easily be confused with the ones referenced above and discussed in the rest
of the paper, so it’s worth briefly characterizing these other models in order to put them aside.
Given the large number of modeling strategies that I want to exclude at this point, I hope readers
will allow me to make broad generalizations about existing (and sometimes merely possible)
evolutionary models in this section without referencing any models explicitly. The next sections
of the paper will return to particular models of the kind that are my focus, discussing some of
them in detail.

Note, first, that most of the points in the previous two sections could apply to an uncountably
infinite population as well, but in this case the idea of the relative frequency of organisms with a
particular trait has even less of a direct connection to real populations. For example, suppose that
a model were to treat the number of organisms in a population as the number of points between
0 and 1, viewing the number of organisms with a trait 𝐴 as the number of points between 0

13. At one point Norton (2012) talks about a biological case—a model of the growth of a population of bacteria—
but his discussion is only indirectly relevant to my concerns here.
14. Here I am using the broad philosophical sense of possibility according to which a system, or more commonly

a universe or “world”, is possible if and only if there is no inconsistency in it. More specifically, there are no correct
descriptions of the possible world that require that a statement be both true and false of that world. (Section 5.1
discusses McLoone’s suggestion that an impossible population could nevertheless play a role in a model through
use of special semantics that allow one to incorporate inconsistent propositions. I argue in that section that even
if that strategy were pursued for infinite populations, the idea of an infinite population could do no work to aid
understanding of evolution.)
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and 0.4. Of course 0.4/1.0 is well-defined, but this hypothetical model doesn’t represents the
number of organisms with 𝐴 as the number 0.4; it represents that number of organisms as
uncountably infinite. Dividing the uncountably infinite number of points between 0 and 0.4 by
the uncountably infinite number of points between 0 and 1 is of course undefined.

However, biologists can and do create create useful models in which it’s stipulated that real
numbers between 0 and 1 (inclusive) represent frequencies in a population. For example, 0.4
can represent the idea that 400 out of 𝑁 = 1000 organisms in a population have trait 𝐴. In this
case the number 0.4 doesn’t represent a subset of points in [0, 1]. The number 0.4 is also not a
relative frequency per se: it’s not defined as a ratio between an integer representing a number of
organisms and a population size. It’s just a real number stipulated to represent relative frequencies
indirectly, and often approximately. Such real numbers can then be mathematically manipulated
according to rules specified in the model. Though there is an (uncountable) infinity of points
between 0 and 1, representing frequencies in this manner doesn’t imply that one is modeling the
population as an infinite set of organisms.15

Let’s consider randomly sampling from a population. This is relevant to some examples
described below, and it’s of interest because models of random drift are often conceptualized as
involving random sampling from some set of organisms. Let’s start by considering the idea of
sampling from either a finite or a countably infinite population. Here is one way to randomly
choose an element from a finite set of size 𝑁: give each element equal probability 1/𝑁, and
select elements with that probability. With a countably infinite set, 𝑁 is infinity, and as noted
above, 1/∞ = 0, so the simple rule for random selection that works with a finite population
would give each element of an infinite set zero probability of being chosen. That is, the obvious
idea that we can sample organisms by giving each of them an equal probability doesn’t work
when 𝑁 is infinity.

However, a model can also stipulate that there is a probability distribution over traits shared
by many organisms, and then choose an organism with trait 𝐴 with probability P(𝐴). (This
stipulated distribution need not be derived from relative frequencies over a population size in
the manner illustrated in the previous paragraph.) One can use these probabilities to model
trait frequencies more directly. One way to do this is to view P(𝐴) as the probability that an
organism is randomly sampled from the population with probability P(𝐴). This makes sense as
a representation of relative frequency, because if one chooses a member of a finite population,
giving each organism an equal probability of being sampled, the probability P(𝐴) of choosing an
organism with 𝐴 would be equal to the relative frequency of 𝐴 in that population. By starting
with the probability distribution Pr, a model can abstract from details about particular population
size, however.

Notice, now, that probabilities such as P(𝐴) can be allowed to vary continuously from 0 to
1. So an uncountably infinite number of possible population states can be represented using
such probabilities. However, as noted above, the infinity of possible states doesn’t imply that
the modeled population is infinitely large. The model simply uses a form of mathematical
representation with an uncountably infinite number of possible values, to provide approximate

15. Throughout this section,most of my remarks target models in which a population has a potentially uncountable
number of states. In theory, similar models could represent states in a finite population of any size using rational
numbers with large finite denominators. The set of rational numbers is countable, though, not uncountable (e.g.,
https://simple.wikipedia.org/wiki/Cantor’s_diagonal_argument). My remarks in this section would apply to such
models, if there were any, because they would represent states of a population as involving an infinite number of
states that don’t correspond directly to absolute frequencies of organisms. I ignore this kind of possible model for
the sake of keeping language simple. (In practice computer models use rational numbers with large denominators,
but the point of doing that is usually to approximate real numbers.)

� open access - ptpbio.org

http://ptpbio.org


abrams: infinite populations 10

representations of relative frequencies in a population that in real cases will have finite size.16
The important point is that while in general (a) it can be entirely legitimate to model a

population using a continuously varying quantity that represents trait frequencies, (b) doing
so does not have to force the assumption that random drift is absent. This is because though
such models represent changes in frequency using a countably infinite number of values, this
representation has no intrinsic connection to population size. It abstracts from population size.
In fact, in diffusion models of evolution, a common kind of model with continuous variation
in population states, drift is required by the formalism except in degenerate cases. In diffusion
models, it is, rather, directional influences such as natural selection that are optional additions.17

In the rest of the paper, except where noted, I’ll use “infinite population” to refer to countably
infinite populations that are infinite in size because they include an infinite number of discrete
organisms. This is the idea of an infinite population that’s associated with the idea that drift fails
to influence the population in some respect.

4 Infinite population models and their kin: case studies

Section 3.1 explained why certain so-called infinite population models of evolution can’t in any
sense incorporate infinite populations. Yet evolutionary biologists do often describe models as
involving infinite populations—in ways that I believe have motivated philosophical claims about
infinite populations. Widespread modeling practices that are described as involving infinite
populations must be meaningful and useful. What’s going on? In this part of the paper I look at
several “infinite population”models and some closely related models in order to work toward
answers.

4.1 Terminological background

My first example is just a little bit complicated, but I believe it’s important to get a sense of how
concepts are used in research, and not only in contexts where pedagogical constraints might
distort normal practices. Vagne et al. (2015) investigated the evolution of genes at two loci when
those genes interact to produce phenotypes in a manner known as “reciprocal sign epistasis”.
These authors were interested in cases in which the resulting phenotypes’ fitnesses exhibited a
pattern known as truncation selection. I’ll start by introducing two terms, “epistasis” and “linkage
disequilibrium”. The latter will come up repeatedly in the case studies below. Readers already
familiar with these concepts should feel free to skip to the next section.

Epistasis Epistasis occurs when genes at different loci interact to produce an organism’s phe-
notype, and the contributions of the two loci can’t be decomposed into separate quantities of
influence that can be added to produce an effect of a given size.18 For example, two loci that
have an additive, non-epistatic effect on height are ones in which the alleles at one locus add

16. One could view a model that represents trait frequencies using numbers that vary continuously between 0 and
1 as a model in which there was an uncountably infinite number of organisms. But here again, that assumption by
itself is unlikely to do any work; only the mathematical terms and manipulations do. A modeler could assume that
there is no drift in the population, but that assumption is not required by of the representation of relative frequencies
as probabilities with an infinite number of possible values.
17. In probability theory, the coefficients in diffusion models that represent directional influences such as natural

selection are called “drift coefficients”(Grimmett and Stirzaker,2020,§13.3). One sometimes finds this mathematical
use of “drift” in discussions of evolutionary diffusion models (e.g., Gillespie 1974).
18. There is some ambiguity in “epistasis”. Sometimes it refers to an effect that cannot be decomposed into

influences whose values can be multiplied to produce the overall effect size.
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or subtract the same amount from height regardless what allele is at the other locus. Suppose
instead that the amount that’s added to height by the change from one allele to another at locus
A depends on which allele is at locus B. That means that the loci interact epistatically. Sign
epistasis occurs when the interaction between two loci is such that the direction of the effect (e.g.,
on height) of an allele at one locus depends on alleles at the other locus.

Linkage disequilibrium Linkage disequilibrium is a nonzero population-wide correlation be-
tween alleles at two loci. In Vagne et al.’s (2015) model, the hypothetical organisms’ genome
includes two loci that the authors call A and B. Each organism has one of two alleles at each
of these loci: an organism can have either allele 𝐴 or allele 𝑎 at locus A, and either allele 𝐵 or
allele 𝑏 at locus B. Linkage disequilibrium between 𝐴 and 𝐵 occurs, for example, when they are
found together in the same individuals more often than would be expected if all of the 𝐴 and 𝐵
alleles in the population were simply randomly shuffled together. An extreme case of linkage
disequilibrium occurs when every individual has either both 𝐴 and 𝐵 or else has both 𝑎 and 𝑏.

Linkage disequilibrium can occur for various reasons, including selection on epistatic effects,
loci near each other on a chromosome (genetic linkage), and various chance processes. I discuss
some of these factors below. One reason that linkage disequilibrium is important is because
when there is selection for an allele that’s found more often with a selectively neutral allele, this
second, neutral allele can increase in frequency as a result—as if it were under selection, even
though it makes no difference to survival or reproduction. In some contexts, this is called genetic
“hitchhiking” (see below), and it’s the basis of recent studies in which complex statistical patterns
of linkage disequilibrium provide evidence for natural selection (e.g., Sabeti et al. 2002; Voight
et al. 2006; Gazal et al. 2017; Goszczynski et al. 2018; Lynch and Walsh 2018).

4.2 Case 1: fixed-effect frequency

Vagne et al.’s (2015) models are of populations of sexually reproducing organisms with haploid
genomes. This means that each organism has only one copy of each chromosome, and Vagne et
al. assume that when two organisms mate, recombination can occur: corresponding pieces of
chromosomes from each parent may be probabilistically swapped to produce each offspring’s
chromosomes. The researchers specified relationships between phenotypes generated by the
four genotypes 𝐴𝐵, 𝑎𝑏, 𝐴𝑏, and 𝑎𝐵, so that 𝐴𝐵’s phenotype was fitter than 𝑎𝑏’s, which in turn
was fitter than either 𝑎𝐵’s or 𝐴𝑏’s phenotype. (One could abbreviate these relationships as
𝐴𝐵 > 𝑎𝑏 > 𝑎𝐵, 𝐴𝑏, taking “ > ” to mean “ has a fitter phenotype than does ”.) This
implements a kind of sign epistasis with respect to fitness since, for example, a change from 𝑎
to 𝐴 would produce a more fit or less fit organism depending on whether there was a 𝑏 or 𝐵
allele at the B locus. It is reciprocal sign epistasis because the 𝐴𝐵 and 𝑎𝑏 genotypes are considered
opposite extremes, and they are fitter than either of the intermediate genotypes 𝑎𝐵 and 𝐴𝑏.

For each (discrete, nonoverlapping) generation in Vagne et al.’s models, the researchers
calculated the frequencies of the four genotypes 𝐴𝐵, 𝑎𝑏, 𝐴𝑏, 𝑎𝐵 after selection on possible
parents, and subsequent random mating between those organisms they allowed to reproduce.
That is, Vagne et al. modeled truncation selection in which a fixed percentage of organisms was
allowed to reproduce; these organisms had the genotypes that produced the fittest phenotypes.
Frequencies were calculated using specific values for a parameter 𝑟 that measures the probability
of recombination between the A and B loci.19 Calculation of frequencies in the next generation

19. Specifically, 𝑟 is the probability that, during reproduction, corresponding pieces of (homologous) chromosomes
will be exchanged in such a way that a new chromosome will be formed in which the A allele from one parental
chromosome will be combined with the B allele from the other parental chromosome.
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also involved linkage disequilibrium, 𝐷, between 𝐴 and 𝐵. That is, in a given generation, it could
turn out that 𝐴 and 𝐵 or 𝑎 and 𝑏 occur together more often or less often than would be the case
if their combinations were determined randomly. For example, 𝐷 = 0 when the frequency of 𝐴𝐵
is equal to the frequency of 𝐴 times the frequency of 𝐵; that is, there is no linkage disequilibrium
in this case.

The researchers repeatedly iterated this process of calculating frequencies from the previous
generation’s frequencies, and did this with a variety of model parameters. Their goal was to
determine the conditions that would allow certain outcomes, and to determine properties of the
evolving population. For example, one property of interest was the number of generations until
one of the four genotypes went to fixation, i.e., until all members of the population had that
genotype.

Vagne et al. explicitly described their models as involving infinite populations:

A three-step process was applied to gain insight into the evolution of a population
selected for a trait subject to reciprocal sign epistasis. First, we …determined the
equilibrium states. … Secondly, times to fixation were estimated by numerical
calculations in random mating in populations of infinite size. Finally, simulations of
finite populations enabled us to investigate the role of genetic drift. (Vagne et al.,
2015, 45, emphasis added)

That is, after analyzing mathematical models with “populations of infinite size”, Vagne et al.
performed simulations using populations of finite size. I’ll focus on the former.20

Examination of Vagne et al.’s mathematical models shows that what makes the populations
into ones “of infinite size” is that the models include terms for relative frequencies of genotypes
𝐴𝐵, 𝑎𝑎, 𝐴𝑏 and 𝑎𝐵, and these terms enter into the calculation of which organisms are selected in
a very direct way, as does the parameter 𝑟: the calculation of which combinations of alleles have
which frequencies in the next generation is performed without the kind of stochastic fluctuation
that would be expected in a finite population. For example, in one of Vagne et al.’s models,
the frequency 𝑝𝑛+1

𝑎𝑏 of the 𝑎𝑏 individuals in generation 𝑛 + 1 is (Vagne et al., 2015, 47, under
“Configuration 1”):

𝑝𝑛+1
𝑎𝑏 =

𝑝𝑛
𝑎𝑏
𝑝 − 𝑟 𝐷𝑛′ (1)

where 𝑝𝑛
𝑎𝑏 is the frequency of genotype 𝑎𝑏 in generation 𝑛, and 𝑝 is the proportion of individuals

selected to be parents of the next generation. 𝐷𝑛′ is the linkage disequilibrium, the (frequency-
based) correlation between 𝐴 and 𝐵, in generation 𝑛, after selection. The formula for 𝐷𝑛′ is a
little bit complicated, but I’ll point out what is important to notice about it:

𝐷𝑛′ =
𝑝𝑛

𝐴𝐵 𝑝𝑛
𝑎𝑏

𝑝2
− 𝑝𝑛

𝑎𝐵 𝑝𝑛
𝐴𝑏 (

𝑝 − 𝑝𝑛
𝐴𝐵 − 𝑝𝑛

𝑎𝑏
𝑝 (𝑝𝑛

𝑎𝐵 + 𝑝𝑛
𝐴𝑏) )

2
(2)

The new terms here, 𝑝𝑛
𝐴𝐵, 𝑝𝑛

𝑎𝐵, and 𝑝𝑛
𝐴𝑏, are frequencies of 𝐴𝐵, 𝑎𝐵, and 𝐴𝑏 respectively in

generation 𝑛. The thing to notice about the calculation of 𝑝𝑛+1
𝑎𝑏 (the frequency of 𝑎𝑏 in generation

20. The fact that in Vagne et al.’s model, fixation can occur in finite time in an “infinite population”without any
further manipulation is an unusual feature of the model resulting from the role of truncation selection in it. Fixation
occurs in the model in finite time because in each generation the fraction 𝑝 of the population containing the fittest
individuals is chosen to reproduce. So when the fittest genotype has a proportion of the population that’s greater
than 𝑝, all of the chosen individuals will have that genotype in the next generation. This occurs regardless of the
size of the population; cf. note 27. (I’m grateful to an anonymous reviewer for pointing this out and pressing for
clarification.)
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𝑛 + 1) from (1) and (2), is that 𝑝𝑛+1
𝑎𝑏 is calculated solely from frequencies in generation 𝑛,

plus a fixed proportion 𝑝 of individuals who reproduce, along with a constant recombination
rate 𝑟. There is nothing stochastic in such a model. In particular, it does not include anything
that could count as modeling genetic drift. In a real population, or in a model with drift, the
relative frequencies in the current generation would typically influence the frequencies in the
next generation, but the precise frequencies in the next generation would depend on how many
individuals of each genotype happened to be selected stochastically from the current generation.

Thus, an infinitely large population as such plays absolutely no role in Vagne et al.’s “infinite
population”model. Infinity plays no role in the mathematics. What is implied by “populations of
infinite size” in Vagne et al.’s models is simply that frequencies in one generation can be calculated
directly from frequencies in previous generations along with constant parameters, without any
stochastic effects corresponding to genetic drift.21 (Later, when introducing their simulations,
Vagne et al. say that “Drift was taken into account by setting a finite population size (𝑁 = 1000
and 𝑁 = 5000)” (Vagne et al., 2015, 48).) We don’t have to worry about paradoxes concerning
relative frequencies other than 0 and 1 in infinite populations, because infinity plays no role in
the models’ calculations. Vagne et al.’s models, as they are used, involve no inconsistencies of the
kind described in section 3.1.22 (This is not to say that we have to understand models as merely
mathematical. At the very least, the variables in the Vagne et al. use are interpreted from the
start.)

4.3 Case 2: equilibria23

Zhao and Charlesworth (2016) also discussed a model having to do with linkage disequilibrium,
in which a locus A that is not under selection can appear to be under selection if, by chance, it
becomes correlated with a locus B that is under selection. Again the model assumes that there
are two alleles at each locus. Zhao and Charlesworth write:

In the present case, the starting point is assumed to be a population of infinite size,
at equilibrium under mutation and selection at the B locus and with no LD [linkage
disequilibrium] between the two loci. It is thereafter maintained at a population size
of 𝑁 breeding individuals each generation. (Zhao and Charlesworth, 2016, 1317,
emphasis added)

In contrast to Vagne et al.’s model, “infinite population”here does not imply that frequencies will
be applied directly in calculating the makeup of the next generation. The “infinite population”
assumption only applies to the initial state in this model—before calculations are iterated to
model subsequent generations with finite size 𝑁. One reason for describing initial population as
having infinite size here is that it is only in large populations that linkage disequilibrium will

21. Of course, that biologists sometimes leave stochastic effects out of models is not a new idea. In philosophy
of biology, such practices were obviously part of Sober’s (1984) motivation for a stronger claim, that evolutionary
theory should be understood as a “theory of forces”—as illustrated by his discussions of natural selection and
Hardy-Weinberg equilibrium.
22. This makes it sound as if population genetic models must have more coherence than I think they do in fact

need in practice. I come back to this point in section 4.5.
23. The examples in sections 4.3–4.5 are of a general kind discussed by Wimsatt (1980) in his criticism of Williams’

(1966) arguments for genes as units of selection. Wimsatt characterizes models similar to the ones I discuss below
as motivated by reductionistic research heuristics. He argues that Williams’ argument depends on the fact that the
population genetic models that result from these heuristics are all biased in the same ways, because of the manner in
which these heuristics are applied. Wimsatt’s argument need not, however, be taken as a general criticism of models
of the kind described here. Rather, it is a warning not to draw inappropriate conclusions from such models without
noticing their limitations.
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be near zero, since linkage disequilibrium can be generated by genetic drift (e.g., Charlesworth
and Charlesworth 2010, 380, 383; cf. quote from Wang below). So “infinite population” implies
that LD is equal to zero. However, setting LD to zero does not required modeling evolution
in an infinite population per se. If we were to take the infinite size claim literally, it would be
difficult to make sense of the claim that mutation and selection have been at equilibrium in the
initial population. Mutation is something that happens in individuals, and the overall rate of
mutation in a population is thus a function of the number of organisms in it (e.g., Gillespie 2004,
29, 33; Charlesworth and Charlesworth 2010, 43). Selection, similarly, depends on frequencies
of offspring per individual. However, as in the preceding section, there is no infinite population
as such in this model. Rather, the model simply includes assumptions—such as there being no
linkage disequilibrium—that would be unlikely to hold if there were drift.

4.4 Case 3: fixed-effect frequency with nonzero minimum value

The examples in the two preceding sections were from theoretical—but empirically oriented—
articles. Examples from textbooks are useful as well when they reflect experience and established
wisdom from modelers. In this section, I consider an example from a well-known textbook
that at first glance may seem to be in tension with some of my preceding remarks. Gillespie
(2004) seems to model populations without drift in roughly the same way as in the example that
I described in my section 4.2, yet Gillespie describes the population as finite. It’s worth looking
closely at the text to see what he means.

I consider a model from Gillespie (2004, sec. 4.2). Gillespie does not describe this model as
involving an infinite population; in fact the only reference to population size that does any work
occurs in a description of parameters of a computer simulation used to generate a plot illustrating
the model (110, cf. 117).24 Gillespie says on page 110 that in the simulation, 𝑁 (population size)
was set equal to 5000. By contrast, near the end of the next section of the book (4.3), which
discusses models closely related to the one discussed in Gillespie’s section 4.2, he explicitly says
that a new model will be “for an infinite population (𝑁 = ∞) in order to remove all effects of
genetic drift” (Gillespie, 2004, 115f ). Nevertheless, although Gillespie doesn’t describe the model
in section 4.2 as involving an infinite population, it includes no randomness—in particular, no
genetic drift—and in that respect is like the model near the end of Gillespie’s section 4.3.25

For example, consider this equation from section 4.2 (Gillespie, 2004, 107),

𝑥′
1 =

𝑥1�̄�1 − 𝑤14𝑟𝐷
�̄� . (3)

This uses notation that’s a little bit different from Vagne et al.’s. It gives the next-generation
frequency 𝑥′

1 of organisms with allele 𝐴1 at the A locus and allele 𝐵1 at the B locus. This
frequency 𝑥′

1 is a function of the frequency 𝑥1 of 𝐴1𝐵1 organisms in the current generation,
where 𝑤14 is a fixed fitness parameter, and �̄�1 and �̄� are average fitnesses calculated from (i)
fitness parameters and (ii) genotype frequencies in the current generation. 𝐷 is again linkage
disequilibrium, although its calculation is simpler than in the Vagne example:

𝐷 = 𝑥1 − 𝑝1𝑝2
24. On page 109, Gillespie mentions that the initial frequency of a new allele would be 1/2𝑁, where 𝑁 is

population size (see also §4.5), but this value is not used until later, in the computer simulation.
25. I believe that Gillespie (2004) is more explicit about the absence of drift in section 4.3 because there he is

discussing a process, “genetic draft” that has some properties in common with genetic drift although it doesn’t
depend on on finite population size (cf. Skipper 2006). Early in section 4.3, Gillespie presents models in which
the population size is finite, and drift does play a role, but Gillespie wants to show that once a new mutation is
introduced into a population, draft operates even when drift doesn’t.
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Here 𝑝1 and 𝑝2 are the overall frequencies of the 𝐴1 and 𝐵1 alleles, respectively (102).
Gillespie’s mathematical model has the same character as those that Vagne et al. use for

“populations of infinite size” (quoted above): frequencies in the next generation are calculated
directly from frequencies in the previous generation along with constant parameters. So it
seems as if Gillespie’s model can be viewed as an infinite population model. Yet the computer
simulation that generates a plot illustrating this model is said (110) to use a finite population size
(𝑁 = 5000). So in what sense can this be a drift-free model? Gillespie gives sample computer
source code at the end of the chapter as a solution to an exercise in which the reader is supposed
to recreate the data that produced his figure.26 In this code, a variable N is set to 5000. This
variable appears exactly once more in the program, in the next line, where it’s used to initialize
a variable eps (epsilon) with the value 1/(2 × N).The variable eps is in turn used for only one
purpose, which is to determine when the frequency 𝑝1 of the 𝐴1 allele—the allele being selected
for in the model—becomes close enough to 1.0 that the computer program should stop. The idea
is that if the population size is 5000 and each organism has the A locus on two chromosomes,
the number of 𝐴1 alleles in the population would be 10,000. Thus if the frequency 𝑝1 of 𝐴1
in the population differs from 1.0 by less than eps = 1/10000, that means that the number
of organisms that lack the 𝐴1 allele is less than 1, so the population has gone to fixation: all
organisms have 𝐴1 on both chromosomes. In that case, the simulation can be stopped.27

Apparently, this is the only role that finite population size plays in the model described in
Gillespie’s section 4.2—the model that is is embodied in the simulation code in his appendix. In
other respects, the model is similar in character to models that are characterized as involving
an infinite population, including Gillespie’s section 4.3 model. So we might view Gillespie’s
model as both assuming both infinite population size and finite population size. That sounds
contradictory. However, if we understand “infinite population size” in models as Vagne et al.
seem to do—as implying merely that the model calculates next-generation frequencies directly
from current generation frequencies—then there is no contradiction.

4.5 Case 4: drift and no drift

Gillespie’s model did not allow drift, though it depended in a narrow sense on assuming that
the population was finite. Charlesworth and Charlesworth (2010) describe a more complex
hitchhiking model that also includes what might, initially, be thought of as a theoretical conflict.
The model first assumes that there is no drift, then adds an assumption that the population is finite,
and subsequently considers a particular effect of drift in a finite population. The Charlesworths’
presentation is based on Barton’s (2000, §2(a)) version of a model introduced by Maynard Smith
and Haigh (1974).28 Most of the details of this Barton/Charlesworth model are a bit too complex
to summarize here, but certain aspects of the model provide a good illustration of modeling
practices that I want to highlight.

In modeling the effect of the introduction by mutation of a new, beneficial allele 𝐵2 at one
locus, Charlesworth and Charlesworth (2010, 410f, box 8.7) gradually develop and simplify
an expression for the change Δ𝑞𝐴 of the frequency 𝑞𝐴 of an allele 𝐴2 at a different locus. For
more than half of the presentation, the Charlesworths’ model involves none of the stochastic
effects that would usually be present in a realistic population of finite size. So this again is an
“infinite population” model in the same sense that Vagne et al.’s model was. However, about

26. Gillespie’s sample answer in Python (a computer language) generates but doesn’t plot the data.
27. In the mathematical model on which the simulation is based, the “frequency” of the 𝐴1 allele could get closer

and closer to 1 but never reach fixation as such.
28. See Charlesworth and Charlesworth (2010, 407, 409) and Barton (2000, 1554).
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two-thirds of the way through the presentation (411, middle), the Charlesworths introduce a
new element to the model. They note that since there is usually only one copy of a new allele
when it is introduced by mutation,29 the frequency of such an allele would be 1/2𝑁, where 𝑁 is
population size—assuming that each organism has two copies of each chromosome, and hence
of each locus. The Charlesworths then plug this value 1/2𝑁 into the equation for Δ𝑞𝐴 that they
have derived without any explicit reference to population size, and without any drift-like effects
represented. As the analysis continues, the authors note that most new mutations are lost by
chance—essentially, because of drift—and they give an estimate for the probability that a new
mutation persists in the population—i.e., that it is not lost. This estimate uses a function of
population size and other factors (𝑠𝑁𝑒/𝑁). The estimate is used to derive a new formula for the
expected value of Δ𝑞𝐴. (Until the introduction of the chance that a new allele would be lost, bare
quantities themselves were estimated, but once stochasticity was introduced into the model, the
Charlesworths switch to a focus on expectations of certain values such as Δ𝑞𝐴.)

Thus in estimating the change in frequency of 𝐴2 from one generation to the next, the
Charlesworths take into account certain probabilistic consequences of finite population size in
one part of the derivation, even though they ignore other probabilistic consequences of finite
population size in earlier parts of the derivation. Like Gillespie’s model, this model can be
described as treating a population as infinite in some respects (in Vagne et al.’s sense), but finite
in others. We can also describe it as involving both drift and its absence. I don’t think there’s
anything surprising here for biologists. Neither Barton (2000) nor the Charlesworths (2010)
remark on what might seem, superficially, like a contradiction in the model. And given the
model’s pedigree from Maynard-Smith and Haigh’s (1974) paper, to Barton’s (2000) revised
model, subsequently enshrined in the Charlesworths’ (2010) textbook, there is no reason to think
that the appearance of contradiction is the result of a mistake, or that the model represents a
problematic departure from mainstream evolutionary biology.

It’s valuable to see that there are no mathematical contradictions in the model. It’s true
that there are assumptions associated with the mathematics that are inconsistent with each
other: some parts of the mathematics are those associated with a drift-free evolutionary process,
and others are associated with a process that incorporates drift. However, the mathematics
itself is consistent. When the Charlesworths assume that a new mutation can be lost through
drift in an otherwise “deterministic”model, they are simply adding a new premise—concerning
the probability of loss of a mutation—to a mathematical derivation that had not previously
incorporated terms for mutation. At each point in the Charlesworths’ derivation, it is clear what
it is about possible real populations that is being approximated.

This kind of modeling “inconsistency” seems common. A look at many extended analytical
treatments of population genetical models shows that, even after a model’s initial simplifying
assumptions are stated, various other modifications are made in the course of the analysis.30
That is, it’s not simply that different models of the same system may incorporate incompatible
assumptions but—as in the Barton/Charlesworth model—the same model may incorporate
incompatible assumptions. For example, a modeler might include a squared fraction in one part
of a derivation, but treat it as equal to zero at another point because it will be small relative to
other terms.31 Or a modeler might replace an expression with its mathematical expectation,

29. For the same genetic mutation to arise in two members of a population in the same generation would be
extremely improbable, so population genetic models often idealize away this possibility.
30. Zhao and Charlesworth (2016) provide nice illustrations of this point, although I didn’t discuss those aspects

of the paper above. There are also other illustrations in Charlesworth and Charlesworth (2010) and Gillespie (2004).
31. Gillespie’s well-known (1977) paper illustrates this idea with a long equation (7) on page 1013 containing

many terms that Gillespie ignores in order to justify the more widely discussed equations (1) 𝜇 − 1
2𝜎2 and (2)
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and use the resulting value as if it were the original expression. This kind of piecemeal, flexible,
jury-rigged, empirically based mathematical inference is not unique to population genetics, but
it seems common in both applied and theoretical population genetical modeling.

5 What are infinite population models (and kin)?

In this part of the paper, I discuss several ways of understanding models described as involving
an infinite population, and ways to think about (superficially) inconsistent models such as the
the Gillespie and Barton/Charlesworth models described above.

5.1 Impossible worlds?

McLoone (2021) notes that biologists sometimes approximate the growth of a population (e.g.,
of rabbits) using a logistic equation model:

𝑑𝑁
𝑑𝑡 = 𝑎𝑁 (1 −

𝑁
𝐾 ) . (4)

Here 𝑁 is population size, 𝑎 is a growth rate, and 𝐾 is the carrying capacity of the environment,
i.e., the number of organisms that it can support (cf. Roughgarden 1979, 303, 306; Hartl
and Clark 1989, 518). McLoone remarks that mathematically, this treats population size as a
continuously varying quantity, with an uncountably infinite number of states between 0 and the
population size 𝑁. McLoone specifies, as an assumption I view as separate from the continuity
assumption implied by the mathematical formalism, that “the population of rabbits is infinitely
large (𝑁 → ∞)” (McLoone, 2021, 12157).32 In section 3.3, I explained that a model with
uncountable states needn’t be treated as embodying the idea of an infinite population. So the
kind of model that McLoone discusses doesn’t seem to require an infinite population in the
sense that is my focus here. Nevertheless,McLoone proposes a novel strategy for thinking about
models with infinite states, and while this isn’t the place for a full discussion of his paper, it’s
worth considering whether his approach could be relevant to some of the models I discussed
above.

McLoone notes that while the model he discusses represents population size as a continuous
quantity, no rabbit population size varies continuously. He argues that in order to understand
practices involving such models we should use a semantics for scientific statements that allows
impossible worlds as well as possible worlds. McLoone’s paper goes on to describe such a seman-
tics based on the common philosophical idea of defining possible worlds as sets of propositions.33
Treating worlds as sets of propositions makes it possible to define “impossible” worlds, ones

𝜇 − 1
𝑁 𝜎2 that summarize contributions of variance 𝜎2 and expectation 𝜇 of numbers of offspring to fitness. (The

full justification for (1) and (2) from (7) comes from three of Gillespie’s earlier articles.)
32. To put this statement in relation to distinctions important to the present paper,McLoone may mean that we

are to take 𝑁 to be finite but allow it to increase without bound. If he meant that 𝑁 = ∞, then equation (4) would
imply that the change over time of infinity (i.e., 𝑑𝑁/𝑑𝑡) would be equal to negative infinity or to an undefined
quantity, depending on the order in which we applied arithmetic operations on the right. It’s possible that McLoone
intended that taking the limit as 𝑁 goes to infinity is what justifies equations such as (4). I’m not sure, though. If 𝑁
were treated as a discrete variable with integer values representing possible population sizes, taking its limit would
give us only a countable infinity. But if 𝑁 were allowed to vary continuously over non-negative real numbers, we’d
already be dealing with continuous variation in population states for finite 𝑁’s.
33. If you think of a world or universe as a configuration of interrelated things and properties, then each such

world can be characterized by the set of all propositions true in it, and we can understand the semantics of statements
involving possibility in terms of such sets.
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that contain inconsistent propositions, by including in a world (i.e., a set of propositions) some
propositions that are inconsistent with each other.

McLoone’s argument for using impossible world semantics is based on some authors’ ar-
guments that models should be understood as specifying counterfactual worlds. McLoone
suggests that a semantics involving impossible worlds would be needed to capture the meaning
of counterfactual statements such as

If a population of rabbits satisfied the assumptions of the logistic equation, then its
size would eventually equal the carrying capacity. (McLoone, 2021, 12161)

However, McLoone’s argument doesn’t seem to depend on models for continuous quantities per
se. Since many models idealize in the sense of misrepresenting what is modeled (e.g.,Weisberg
2013; Potochnik 2017), any statement that conjoins assumptions of a model with truths about
what is modeled is likely to involve contradiction.

McLoone may be right about such model-world conjunctive statements, and he may be
right that philosophical views that take models to specify counterfactual worlds mean that such
statements are implied by scientific models like the logistic rabbit model. However, I don’t believe
we need to take such conjunctions as central to modeling in biology. One common view is that a
model based on the logistic equation uses continuous quantities to represent discrete numbers
of rabbits (e.g., Weisberg 2013; Morrison 2015; Gelfert 2016; Potochnik 2017), rather than
identifying discrete and continuous numbers (cf. §3.3). We needn’t assume that conjunctions
of model assumptions and what’s true in the world must play a role in modeling practices in
biology. We only have to assume that the model is used to represent the world. So I don’t see
this aspect of McLoone’s approach as needed for cases like those discussed in section 4.

However,my argument in section 3.1 was not that (countably) infinite populations give rise to
a paradox in the model-world relation. The paradox was in the model itself. If semantics involving
impossible worlds was potentially valuable in some contexts, one might wonder whether they
could be used to make sense of biologists’ talk of infinite populations. Let us consider the idea of
a non-actual world in which there was evolution in a countably infinite population. Such a world
would be one, I suppose, that contained both the proposition 𝛼 that the number of organisms
of type 𝑇 was infinite, and a proposition 𝛽 that the relative frequency of organisms of type 𝑇
was equal to some finite number strictly between 0 and 1. These statements are inconsistent, as I
argued, but that seems OK for a semantics that allows impossible worlds. The thing to notice,
however, is that the infinite population claim would not do any work in a model corresponding to
this picture. For modeling purposes, we would need propositions related to 𝛽 that stipulated how
relative frequencies of trait types changed over time (§3.3), but propositions such as 𝛼 concerning
the infinite size of the population would play no role in inferences about changes in frequencies.
So an impossible worlds semantics doesn’t add anything of immediate use for thinking about
evolution in an infinite population.

On the other hand, perhaps it could be argued that a semantics involving impossible worlds
would provide a useful way to think about the Gillespie and Barton/Charlesworth models of
sections 4.4 and 4.5, since in these models, there is both a finite population, or drift, in one sense,
and an infinite population, or no drift, in another. Note that this would be a claim only about
the model itself, and not about populations represented by the model or the mathematics of
the model. I don’t think we need impossible world semantics to understand such cases, and I’ll
describe what what I see as better alternatives. However, I won’t rule out the possibility that
some views about modeling might have a role for such a strategy.
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5.2 Limits

The examples I discussed in section 4 concern models that, I argued, incorporate particular
assumptions that have sometimes been described as consequences of assuming an infinite popu-
lation. Specifically, the models assume that frequencies at time 𝑡 directly determine subsequent
changes (§§4.2, 4.4, 4.5), or they assume the absence of linkage disequilibrium (§4.3). Given
usual ways of thinking about evolutionary processes, both of these assumptions imply the absence
of stochastic effects of random drift—effects whose probability would go to zero as popula-
tion size increased. So we might suggest that statements about infinitely large populations are
“justified as shorthands for claims about limits as population size is increased without bound”
(Abrams, 2006, 264f ), or that as Sober suggested, “the meaning behind the idea” (1984, 44)
of an infinite population should be given in terms of limits (see §2). Strevens (2019) argued
that reasoning using such limit statements should be viewed as “a rational reconstruction of
what is going through population geneticists’minds when they advance the infinite population
idealization”.34 The general idea here is that probabilities of effects of drift lessen as population
size is increased, and these effects have a probability of zero in the limit.35 Mathematical models
that ignore drift would be literally true of what happens in the limit. This is consistent with the
argument in section 3.1 that evolution in an infinite population per se is nonsensical. As Norton
(2014) notes (§3.2), something can be true in the limit as 𝑁 increases toward infinity without it
being true for 𝑁 equal to infinity.

The following statement from a recent scientific paper can be seen to lend some support to
this limits view of infinite population claims. (It’s not necessary to understand all of the details
of the quotation.)

…with [population size] 𝑁 = 64, linkage disequilibrium is important [has a signifi-
cant effect] and does not decrease much with genome size. Even with an infinite
genome size (i.e., free recombination between loci), the correlations are still 0.95
between 𝑟𝐺 and 𝑟𝑀 and 0.88 between 𝐹𝐺 and 𝐹𝑀. When the population size is in-
creased to 512, these correlations reduce to 0.92 and 0.66. It is predictable that these
correlations reduce to zero for an infinite genome size in an infinite population. (Wang,
2016, 8, emphasis added)

Here 𝐹𝐺, 𝐹𝑀, 𝑟𝐺, and 𝑟𝑀 are different ways of measuring genetic relationships that would be
influenced by linkage disequilibrium. The quotation shows that Wang is envisioning a progression
as population size 𝑁 (and genome size) increases. The last sentence shows that the terminal step
of this progression is an infinite population (of organisms with infinite genomes). However, the
justification for this point comes solely from a claim about limits. Thus, one might reinterpret
claims about evolution in infinite populations as being about limits as 𝑁 → ∞, but not about
populations where 𝑁 = ∞ (since that makes no sense).

However, if the limit interpretation were correct about all references to infinite populations in
evolutionary biology, the Gillespie model and the Barton/Charlesworth model discussed above
show that this claim might have to be understood in a nuanced way: It may be correct that in one
part of the mathematical development of a model, the assumption that there is no drift is justified by
allowing population size 𝑁 to go to infinity. However, as we’ve seen, the model can assume a
finite 𝑁 at another step. So the limit justification could not apply to the entire model in such
cases.
34. The notion of a rational reconstruction (Carnap, [1928] 1969) is, roughly, a proposed way of providing a more

systematic understanding of what scientists could or should be saying, which preserves much of what they do say
and do.
35. Strictly speaking, this doesn’t mean that effects of drift are impossible; see note 11.
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5.3 Large numbers

Another problem with understanding infinite population talk solely in terms of limits is that
though papers such as those of Vagne et al. (2015) and Zhao and Charlesworth (2016) are quite
theoretical, they seem to be oriented toward possible empirical applications—where population
sizes do not increase toward infinity. Zhao and Charlesworth’s interest in empirical applications
is shown by their remark that their “results shed light on experiments on the loss of variability at
marker loci in laboratory populations” (Zhao and Charlesworth, 2016, 3). Vagne et al.’s empirical
orientation is apparent from the article’s title itself: “When is recombination favorable in a
pre-breeding program with a selfing species?”Here the “term ‘pre-breeding’ refers to the transfer
of genes from related wild ancestors or from ancient varieties to breeding material” (Vagne et al.,
2015, 45). That is, the models in the paper are intended to illuminate what happens to genetic
patterns when animal or plant breeders practice artificial selection on a population of animals, at
least some of whom were formerly wild. Similar methods are sometimes used for experiments
on evolution (e.g., Alexander et al. 2014). Gillespie’s and the Charlesworths’ textbooks also
repeatedly highlight connections to empirical work.

Why would it matter for empirical studies what happens as 𝑁 increases without bound?
Why discuss “infinite population”models at all, if they concern what would be the case in the
limit? One reason is that if we understand infinite population size in terms of limits, that implies
that if a population is sufficiently large, its behavior will be close to the behavior of a population
as size goes to the limit.

So perhaps all talk of infinite populations is simply a way of talking about large, finite popula-
tions. Infinite population models are often intended to give us insights about the approximate
behavior of large populations. In fact, many textbooks and articles fail to talk about infinite
populations where they might have been expected to do so. Earlier, in section 3, I quoted a passage
from the introduction to a textbook by Nagylaki that seemed to allude to infinite populations.
However,when Nagylaki gets down to work and discusses actual models, he avoids talk of infinite
populations, writing, for example:

The total number of offspring,

𝑁 = ∑
𝑖

𝑛𝑖 (2.1)

must be sufficiently large to allow us to neglect random drift. (Nagylaki, 1992, 5)

Thus one can ignore random drift, which involves changes whose probability goes to zero as
𝑁 goes to infinity, as long as 𝑁 is large enough that those probabilities are small. Another
illustration can be found in an article by Waxman and Loewe:

Within the life cycle we assume that a very large number zygotes of all genotypes
are produced, so that viability selection is essentially deterministic in character.
(Waxman and Loewe, 2010, 246)

That is, a “large number”of organisms (in the form of fertilized eggs) are produced, so selection is
“essentially deterministic”, i.e., it occurs without the interference of drift. In the Charlesworths’
textbook, there is an explicit statement of this equation of the “infinite”with the merely large:

… we assume that … the population size is so large that random fluctuations in
genotype frequencies can be disregarded (for convenience, this is called an “infinite”
population). (Charlesworth and Charlesworth, 2010, 50)
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In the previous section, we considered the possibility that “infinite population”meant “in
the limit as 𝑁 goes to infinity.”The examples in this section, by contrast, suggest that “infinite
population” sometimes means “large population”—i.e., large enough that the influence of drift
can be ignored.

5.4 Beyond limits and large numbers

It’s somewhat reasonable to think that “infinite population” always means “large population” or
“in the limit as population size increases”. However, if the point of large populations or limiting
size claims is that they are what justify leaving various effects of drift out of a model, how are we
to understand the Gillespie and Barton/Charlesworth models? The first ignores effects of drift
without assuming the population is large,36 and the second would seem to need its assumptions
justified both by assuming a population is large and by assuming it is not large. (A population’s
size might be large enough to ignore for one purpose, but not for the other. However, it doesn’t
seem as if these two models are supposed to be to be restricted to carefully tailored ranges of
populations sizes in this way.) Similar remarks can be formulated in terms of limits as 𝑁 → ∞.

I think the most reasonable view is that in such cases, the modeler(s) simply idealize away
effects of finite population size in one part of the model, but not in another. Or more specifically,
they assume the absence of drift in one part of the model, but allow drift or other effects of finite
population size in another part of the model. Recall that in neither the Gillespie model nor the
Barton/Charlesworth model was there any mathematical inconsistency. There is no need to think
of population size as both large and small, or as taking 𝑁 to the limit while keeping 𝑁 bounded.

Now, neither Gillespie nor the Charlesworths used the term “infinite population” to describe
the models I’m currently discussing. However, either there are drift-free models that involve
infinite populations in some sense, and also drift-free models that don’t; or it’s incorrect to identify
claims about the “infinite size” of a population with the absence of drift within a model. The
former alternative seems incorrect, because there appears to be no meaningful difference between
models in which drift is absent that are associated with phrases like “infinite population”, and
those that aren’t. Describing a model as involving an infinite population can aid communication,
but it’s inessential. My guess is that Gillespie and the Charlesworths avoided using “infinite
population” for these two models simply because they recognized that using “infinite population”
would have confused readers. They did use the phrase elsewhere, in places where it would not
have been confusing (§§4.4, 5.3).

Thus it seems most plausible to view “infinite population” talk as an informal way to convey
that some effects of drift that might have been thought relevant to a model are excluded from it.
This means that an infinite population model does not incorporate an idealization in the form of
an infinite population assumption. That is, the model does not make a false assumption that a
represented population is infinite. On the other hand, such models do incorporate idealizations in
the sense that they falsely represent real populations as if they were free from one or more effects
of drift.37 But it’s wrong to view “infinite population” talk as always meaning (Sober, 1984), as

36. Even if 𝑁 = 5000 were large, this assumption plays no role in justifying leaving drift out of Gillespie’s model.
Assuming that 𝑁 = 50, for example, would simply end the computer simulation sooner.

37. Godfrey-Smith (2009a) and Potochnik (2017), following Jones (2016), distinguish between idealization, in
which a model incorporates assumptions that are false of systems that are modeled, and “abstraction”, in which
features of of some real-world system are not misrepresented, but are simply not represented. So one might think
that a model in which certain effects of drift are absent is one that incorporates an abstraction. This may seem
plausible given views that treat drift as a variety of physical process that’s distinct from natural selection (e.g.,
Millstein 2002; Gildenhuys 2009). A model that ignores drift could be viewed as simply failing to represent drift
processes in natural populations. Other authors treat natural selection and drift as intimately involved aspects of
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justified by (Abrams, 2006), or as rationally reconstructible as (Strevens, 2019) statements about
limits.38 Further, contrary to what Potochnik wrote, it seems clear that an infinite population is
not a “requisite assumption whenever genetic drift is not taken into account” (Potochnik, 2017,
55).

5.5 Virtues of loose language

The case studies and quotations above (§§4, 5.2–5.4) suggest that sometimes biologists think
about infinite population assumptions as involving limits, while at other times they think of
these assumptions as merely concerned with large populations. I suggest that at a minimum,
“infinite population”means nothing more than “we’re leaving out such and such particular effects
of drift”. Some readers may want an analysis of “infinite population” that gives it a more specific,
determinate meaning. But in each of the examples I discussed in section 4, it was always clear
from context what assumptions about drift or its absence were to be used. When authors used
phrases like “infinite population”, it was clear what the implications of the phrasing was. Shouldn’t
that be enough? I see no reason for assuming that biological language must express meanings
with more precision than is needed for successful research. There is little reason to think that
“infinite population” has a single, precisely specifiable meaning (even putting aside models that
use uncountable numbers of population states, such as those I discussed in section 3.3).

Consider Keller’s response to the idea that scientists should adhere to the “harsh mandate” of
always working to replace figurative language with precisely defined terms:

The difficulty is obvious: scientific research is typically directed at the elucidation of
entities and processes about which no clear understanding exists, and to proceed,
scientists must find ways of talking about what they do not know—about that which
they as yet have only glimpses, speculations. To make sense of their day-to-day
efforts, they need to invent words, expressions, forms of speech that can indicate or
point to phenomena for which they have no literal descriptors. … Making sense
of what is not yet known is thus necessarily an ongoing and provisional activity, a
groping in the dark; and for this, the imprecision and flexibility of figurative language
is indispensable. (Keller, 2002, 118)

On my view, the term “infinite population” is optional figurative language. Rather than a being
used to grope toward an understanding of new phenomena, as in Keller’s quotation, the flexible
associations of “infinite population”may aid communication about similar but different modeling

the same process (e.g., Abrams 2007, 2023; Clatterbuck et al. 2013). On this view, leaving drift out of a model is
an idealization, since it distorts the character of a single selection-and-drift process. Note, however, that even on
a distinct-process view such as Millstein’s, drift is always present in real populations, and typically influences its
evolution. That means that inferences drawn from a model that does not incorporate all relevant effects of drift would
distort implications concerning probable changes in a real population. In that sense, even on the distinct-process
view, a model that leaves out effects of drift involves an idealization.
38. Strevens (2019) gives a complex argument for a complex non-literal interpretation of “infinite population”

talk, motivated by generalizations based on simple models that abstract from details like those I discuss here.
Although Strevens’ conclusions don’t seem consistent with all of the cases I discuss above, his view might provide
useful perspectives on some modeling contexts. A detailed discussion of his proposal belongs in another paper,
though. (Strevens also argues that infinite alleles and infinite sites models should always be understood as rational
reconstructions of statements about limits, as the number of alleles or loci increases without bound. As I remarked
in note 12, those models don’t seem problematic in the way that infinite population models are. Stevens’ account of
infinite alleles/sites models might be valuable even though it’s based on abstracting from details of practice. I think
it’s more plausible that “infinite” in “infinite sites” and “infinite alleles” is merely a loose idiom, but I won’t try to
argue for that view here.)
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patterns in related contexts. I suggest that the variation in uses of “infinite population”, and
the deployment of different assumptions about drift and population size that I’ve described are
consequences of this flexibility.

This is not to say that all important terms and concepts in evolutionary biology have the
same flexibility. Some terms may come to have single, precise meanings, or may have a series of
more or less precisely defined variants. For example, Ereshefsky (1992) may be right that there
are only a few alternative species concepts, and the few gene concepts that Griffith and Stotz
(2014) described may capture many common uses of “gene”. On the other hand Waters argues
that

Sometimes it is useful to be vague, and in such contexts biologists invoke a blunt
concept akin to the gene concept of classical genetics …. In other contexts it is
important to be precise. When precision is important, biologists employ what I
have called the molecular gene concept …. (Waters, 2017, 94, emphasis in original)

Waters characterizes the molecular gene concept as a parameterized family of ways of narrowing
its application:

The molecular gene concept can be specified as follows:

A gene 𝑔 for linear sequence 𝑙 in product 𝑝 synthesized in cellular context
𝑐 is a potentially replicating nucleotide sequence, 𝑛, usually contained in
DNA, that determines the linear sequence 𝑙 in product 𝑝 at some stage
of DNA expression.

The reference of any gene, 𝑔 is a specific sequence of nucleotides. The exact sequence
to which a 𝑔 refers depends on how the placeholders 𝑙,𝑝, and 𝑐 are filled out. (Waters,
2017, 95)

So according to Waters, while some gene concepts are vague, the molecular gene concept is not.
It is a parameterized family of more precise applications of the concept (see also Waters 2019).

Somewhat like the molecular gene concept, “infinite population” language is associated with
a family of closely related ways of thinking about and applying ideas about population size and
drift. “Infinite population” language per se is so vague, however, that it is just these associations
that constitute what the term amounts to in practice. Although the associated ideas about
population size (size in the limit, large size, etc.) and about effects of drift (frequency change,
loss of mutations, linkage equilibrium, etc.) are logically and mathematically related, they can’t
be organized in terms of a few parameters as in the case of the molecular gene concept. The
applications of ideas concerning drift in modeling remain very flexible.

6 Conclusion

Some mentions of (countably) infinite population models by philosophers vaguely suggest,
without necessarily requiring, that the idea of an infinite population per se plays a role in
models (e.g., Sober 2008; Weisberg 2013; Morrison 2015; Potochnik 2017). It is clear that
infinite populations per se can’t play that role. Where philosophers have clearly expressed a less
problematic view (Sober, 1984; Abrams, 2006; Strevens, 2019), they’ve usually argued for the
idea that infinite population claims should be understood in terms of limits. The arguments
above imply that at the very least, the view that infinite population talk should be understood in
terms of limits gives a misleading perspective on scientific practices. It’s valuable to look closely
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at a wider variety of cases than the sorts of models that seem to have motivated claims like those
made by Sober (1984), Abrams (2006), and Strevens (2019). More generally, I’ve argued that it’s
a mistake to view “infinite population” and the like as having a precise meaning, justification,
or rational reconstruction that fits all of its uses. The variety of models that are associated with
infinite populations seems best understood by viewing “infinite population”as figurative language,
in a scientific tradition of practices that involve closely related ways of representing the absence
of effects of drift.

I suspect that some readers will find this view unsatisfying. Am I just giving up on the
philosophical ideal of providing a systematic account of an area of science, or on the scientific
ideal of describing the world with precision? I share the desire for a relatively simple, systematic
account of scientific terminology such as “infinite population”, and of practices involvingmodeling.
The facts, it seems, don’t support such an account in this case: the variation in useful practices is
too great. Does that mean that biologists’ practices involving models and drift are ad hoc and
irrational? No, of course not. There is systematicity to models involving drift or its absence,
but it’s just the systematicity that results from biologists’ reasoning, and from social practices
concerning models and the natural world. Varied and often novel, appropriate practices can arise
from reasoning, social interactions, modifications of the work of others, and so on, without there
being a simple systematic account of the resulting practices. It might be possible to give a more
specific, systematic account of uses of “infinite population” and modeling practices concerning
drift, or a set of heuristic descriptions of these practices. However, an account that reflected
examples like those I’ve discussed would not be simple, I believe. Its development might require
social scientific research on contemporary practices across different labs and research contexts.

I end with remarks about possible questions for future research. First, to what extent are
such extremely flexible uses of language and models common in science, reducing the value of
attempts to systematize scientific language? Elsewhere (Abrams, 2023), I argue that “population”
terminology used in empirical research is flexible in ways that might not be specifiable outside
of particular research contexts,39 though the flexibility characteristic of population talk is quite
different in character from that of infinite population talk. Some treatments of modeling in the
physical sciences seem to consider models as if they could not include the kind of piecemeal,
superficial inconsistency of the Gillespie and Barton/Charlesworth models (e.g., Suárez 2009b;
Callender 2001). That makes some sense, because physical scientists study a physical world that
seems to be subject to systematic laws, dispositions, etc. By contrast, biological sciences study
systems that exhibit subtle or large variations, with messiness involving complex differences in
many respects (Wimsatt, 2007; Mitchell, (2009) 2012; Waters, 2017, 2019; Abrams, 2023). It
would perhaps be natural, then, if modeling in biological sciences turned out to require more ad
hoc flexibility. However, one can find illustrations of practices in physical sciences that seem to
exhibit similar sorts of flexibility (McComb 2004; Wimsatt 2007, ch. 13; Wilson 2006, ch. 4).
Moreover, some authors such as Bill Wimsatt and Jim Griesemer (e.g., Wimsatt and Griesemer
2007; Wimsatt 2007) have provided analyses of scientific practices in some contexts that capture
patterns of reasoning and norms in science without providing a fully systematic account, which
might be impossible for the cases they discuss. This kind of strategy may be an option for drift
and “infinite population”.

Second, the fact that some evolutionary models explicitly assume that a population is finite
while also representing it as if it were free of drift, or treat a population as subject to drift in
some respects but not in others,may present special challenges for some philosophical theories of

39. Others such as Millstein (2010) argue that evolutionary biology and ecology do or should depend on a few
well-defined population concepts.
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scientific models. Advocates of the view that models are fictions40 may need to address the fact
that models such as the Gillespie model and the Barton/Charlesworth model seem to require
inconsistent fictional worlds—worlds perhaps more like dreams than most novels, or perhaps
like the impossible worlds of McLoone’s formalization. Formal characterizations of similarity
between models and targets (e.g.,Weisberg 2013) might also need to be refined to deal with cases
like these. If it turned out to be difficult for some theories of modeling to account for cases like
the Gillespie and Barton/Charlesworth models, because those philosophical theories attribute
structure to models that fits poorly with such cases, perhaps that’s a reason to favor the kind of the
deflationary model semantics advocated by Callender and Cohen (2006) and Odenbaugh (2021).
Their approaches allow mathematical expressions to represent in a manner that is primarily
dependent on the semantic capabilities of scientists, and scientists’ intentions about what is to
be represented by various parts of a model. Biologists already seem to have consistent ways of
thinking about what is represented in models like the Gillespie and Barton/Charlesworth models,
so theories of representation that make it parasitic on scientists’ existing thought processes might
need no refinement for such cases.
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