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The brain exhibits both viscoelastic and hyperelastic behaviors (Miller and Chinzei, 
2002) [1]. The extent to which the brain exhibits each of these behaviors, however, is 
not fully known. As more work has been done in this area, a consensus has yet to 
emerge on material parameters that form a complete, accurate mechanical model of 
the brain. Models are formed with unique sets of experimental data using various 
methods, which leads to much variation in the material parameters used across 
studies. The variation indicates that there is a disagreement on the extent to which 
certain components of the brain material contribute to the observed behavior. It is 
likely that the disagreement in parameters will manifest differences between model 
behavior at extreme loading conditions. Brain behavior at such conditions is pertinent 
to improving the designs of helmets or crash safety systems. This paper explores the 
role of hyperelasticity in the brain by comparing the phenomenological differences 
between a simple linear viscoelastic and hyper-viscoelastic model of the brain. In 
order to do this, an isotropic model brain was generated using the finite element 
analysis software Abaqus 2019 and rotational loads were applied. A parametric study 
was performed using this model and the results were analyzed in Matlab 9.7. An 
injury threshold was implemented for each test to reveal differences in material 
composition. Upon completion of the tests and analysis of the results, a noticeable 
difference was observed between viscoelastic and hyper-viscoelastic models when 
comparing resultant shear strains of the tests, particularly at the extreme loading 
conditions. Noting the observed differences in connection to the material composition 
will allow researchers to make educated decisions on the extent to which they 
model brains with hyperelasticity. It will also allow researchers with simple linear 
viscoelastic models to weigh the potential behavior that might not be shown in the 
simple models.  
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Introduction

Since the 1960’s, attaining the most accurate form for modeling the mechanics of 
the human brain has been studied and the merits of various models have been 
debated. However, due to the unique characteristics of the human brain and lim-
ited ability to conduct tests on it, a consensus has yet to be made in determining 
its material properties. Because of this, there is much variation in the material 
parameters used by researchers. Table 1 shows the variation in brain material 
parameters for Ogden’s model of hyperelasticity that have been used in a few 
well-known publications. The variation in material parameters shown in Table 1 
suggests that, under the Ogden model, one set of parameters that models the 
hyperelasticity of the brain with complete accuracy may not be attainable.

The complexity of the brain has given way to two approaches to researching 
this topic. The first approach forms models with complexities such as anisot-
ropy and hyper-viscoelasticity, as it is known that these are fundamental aspects 
of brain behavior (Chatelin et  al., 2012) [2]. The second approach models the 
material composition simply, including only essential components (i.e. density, 
elasticity, viscoelasticity), so as not to use incorrect parameters for complexi-
ties that may dramatically affect results. This approach assumes that if incor-
rect parameters are used for anisotropy and hyperelasticity, then the results will 
be less accurate than using a simple model with fewer unknown parameters. 
Rashid et al., 2012 [3] and many reports like it use the first approach and assume 
that a hyper-viscoelastic model is necessary in order to produce valid results 
under certain loads. Other reports have assumed that the added complexities of 
hyperelasticity or anisotropy are trivial for different circumstances (e.g. Brands 
et al., 2004) [4]. Either decision can produce meaningful results if the effect of the 
material assumptions is known and weighed with the conclusions. The follow-
ing computational studies explores the role of hyperelasticity in the mechanics 

α µµ0 [Pa] Publication

–4.70 842 Miller and Chinzei, 2002 [1]

6.95 5160 Rashid et. al., 2012 [3]

0.038, 0.063 182, 263 Prange and Margulies, 2002 [9]

3.50, 6.84 319, 137 Valardi et. al., 2005 [10]

Table 1: Variation in Hyperelastic Components. Shown below are the values used for 
the unrelaxed shear modulus, µ

0
, and alpha constant, α, for first order Ogden models of 

hyperelasticity from four publications. The comma separated values represent parameters 
for gray and white matter of the brain, respectively.
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of the brain under rotational motion so that the effects of material assumptions 
in brain models are known.

Methods

Two computational studies were conducted using the finite element analysis 
software package Abaqus 2019 on a circular cross section of a virtual brain. The 
first study validated the accuracy of the results from a 0.6 mm mesh model by 
comparison to the results from a 0.2 mm mesh model. The second study pro-
vided a comparison between viscoelastic and hyper-viscoelastic behavior using 
damage criterion. For both studies, rotational loads were applied to the brain for 
each material composition and the shear strain response was analyzed.

Geometry. A  circular cross section of the brain and skull, modeled with 
Abaqus, was used for all tests and is shown below in Figure 1. The plane strain 
assumption was used.

Figure 1: Shown above is the cross section of the Abaqus model brain that was used for 
each test. The skull is shown in red and the brain is in green. The skull is defined as a rigid 
body and the brain material definition varies between viscoelastic or visco-hyperelastic 
throughout the studies.
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Loading Specifications. For each test, the system was subjected to a load 
defined by a sinusoidal rotational acceleration about the centroid of the brain. 
The parameters used to vary the input are TDur and Δω as shown below in 
Figure 2.

(a) (b)

Figure 2: Loading specifications applied to the skull for each test. (a) The rotational 
acceleration delivered to the skull, with period set by TDur. (b) The rotational velocity, 
with magnitude set by Δω.

Ogden’s Hyperelastic Model. For the computational studies performed in 
this report, a first order Ogden model, N=1 was used. The strain energy den-
sity equation for Ogden’s model of hyperelasticity is shown below in equation 
(1) [5].
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The inputs to this model are the relaxed shear modulus, µ1, the alpha con-
stant, α , and the D1  value, which is determined by the bulk modulus, k0  through 
the relation D k1

2
0

= . Abaqus computes and outputs the total volume change, Jel, 
and stretch values, λi , for each finite element of the model.

Mesh Validation

To ensure that appropriate mesh properties were used for the material compari
son, four tests with Δω = 0.10 rad

s
 and varying values of TDur = 0.2, 0.3, 0.5, and 
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1 ms were conducted for both a 0.6 mm and 0.2 mm brain mesh. The maximum shear 
strain, γ , was observed at a consistent point in time over a consistent area of the brain 
for each test. This area is shown in Figure 3 and the material parameters describing the 
brain are given in Table 2. The viscoelastic component is expressed in the time domain 
and the hyperelastic component is defined by the Ogden model. The results of the mesh 
comparison are compiled in Table 3 and reveal the extent to which a 0.6 mm mesh can 
produce reliable results. A 0.6 mm mesh is preferable to a 0.2 mm mesh as computation 
can be completed much faster.

Figure 3: Shown above in red is the area that was used to compare maximum shear strain values 
for each mesh in the first study.

Viscoelastic Hyperelastic

gi
P

k
i
P τ i µ1 α D1

0.84 0 0.1 1000 –5 2*108

Table 2: Material Composition of Mesh Comparison Model. The material parameters 
of the model used for the mesh comparison are shown below. The density used for both 
compositions is 1000 kg

m3
.
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The findings in Table 3 were used to determine which values of the loading specifica-
tion, TDur, produce results that experience insignificant numerical dispersion. Only 
TDur values of 3 ms or higher can be relied on to produce accurate results when 
using a 0.6 mm mesh. Such a condition was used for the remainder of the tests.

Material Comparison Setup

This study compared the behavior of a viscoelastic model with that of a hyper-
viscoelastic model. Each test was evaluated against a maximum shear strain 
injury threshold to reveal differences between the models. A preliminary phase of 
these tests was completed to show which loading inputs would cause significant 
deformation of the brain. Once these potentially harmful inputs were known, 
another phase was completed with more tests using such inputs.

Material Parameters and Loading Inputs. For every set of tests, 9 values of 
Δω and 13 values of TDur were combined, resulting in 117 tests with various load-
ing inputs. Four sets of tests were completed, with each set using a consistent 
material composition. Lower and upper bounds of the relaxed shear modulus 
were used in order to understand if this value significantly contributes to differ-
ences in shear strain. For each bound of hyper-viscoelasticity, a corresponding 
composition of viscoelasticity was tested. The values for the corresponding com-
positions were obtained using Lamé parameter relations as explained below and 
shown in Table 4. This value was held constant for the lower and upper bounds. 
The relaxed shear modulus, μ1, was given a value of 1 kPa for the lower bound 
and 3 kPa for the upper bound. From these values of μ1 and K, the corresponding 
values of the Poisson’s ratio, ν, and Young’s modulus, E, were calculated using 
Lamé parameter relations [6].

2 ms Pulse 3 ms Pulse 5 ms Pulse 10 ms Pulse

γmax , 0.2 mm mesh 0.394*10–3 0.587*10–3 0.963*10–3 1.878*10–3

γmax , 0.2 mm mesh 0.225*10–3 0.584*10–3 0.962*10–3 1.874*10–3

Percent Error 42.9 % 0.511 % 0.104% 0.2130%

Table 3: Mesh Comparison Findings. Tabulated below are the findings of the mesh 
comparison. Percent error was calculated under the assumption that the 0.2 mm mesh 
is accurate. The results from a 0.6 mm mesh become unreliable with pulse durations less 
than 2 ms.
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The Injury Threshold. In Morrison et. al., 2003 [7], it was suggested that 
brain cells will experience significant damage if their strain exceeds 10%. For 
the preliminary phase of tests, the 10% shear strain threshold was used. For 
the second phase of tests, two shear strain thresholds were used. A  lower 
threshold of was used 5% along with the standard threshold of 10% to reveal 
whether the effects of the composition differences are exaggerated at higher 
strains.

Results

Maximum Acceleration Calculations

In order to represent the sets of tests, the maximum angular acceleration, 
Max(α), has been plotted against Δω. The value Max(a) for each test is derived 
from values for Δω and TDur. Shown in Figure 4 is the lower bound of the viscoelastic 
set of tests from the preliminary phase. On the x-axis of each plot is a logarithmic scale 
of the maximum angular acceleration, Max(α), of the skull. On the y-axis is the 
change in angular velocity, Δω, of the skull. Each point represents a test. Data 
points shown in red reveal tests where any element on the brain has exceeded 
the injury threshold.

The results from Figure  4 led to the second phase of tests using loading 
inputs that were finely incremented within the injury inducing inputs.

Viscoelasticity Visco-Hyperelasticity

gi
P

ki
P τ i ν E gi

P
ki

P τ i µ1 α D1

Upper
Bound

0.84 0 0.1 0.499997 2999.99 0.84 0 0.1 1000 –5 2*108

Lower
Bound

^^ ^^ ^^ 0.4999925 8999.95 ^^ ^^ ^^ 3000 ^^ ^^

Table 4: Material Comparison Parameters. The parameters for each material component 
are shown below. The viscoelastic component is in the time domain and the hyperelastic 
component is defined by the Ogden model. The units for each parameter are shown in 
brackets. The carrots indicate the same value was used for the lower bound as for the 
upper bound. The density used for all tests is 1000 kg

m3
.
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Figure 4: Shown above is the lower bound of the viscoelastic set of tests from the 
preliminary phase. The black lines show the loading input boundaries for which the second 
phase of tests are conducted. Notice that the two columns on the right side are excluded 
due to numerical dispersion, a concept that is explained in the Discussion section.

Material Comparison Results

The results of the second phase of tests are compiled in Figure 5 on page 10. 
The figure uses two different shear strain injury thresholds. Any differences 
between the visco-hyperelastic and viscoelastic compositions are highlighted in 
yellow. Three observations can be noted. The first is that a large acceleration 
(� � 435 2 )rad

s  is necessary to observe differences between the hyper-viscoelastic 
and viscoelastic models. Even when the change in angular velocity is high, no 
differences were observed between the viscoelastic and hyper-viscoelastic mod-
els unless significant acceleration was applied. Secondly, the differences caused 
by the hyperelastic component are more pronounced at higher strains. This is 
evidenced in that Figure  5a reveals more differences in shear strain behavior 
than Figure 5b. Lastly, the upper bound, with relaxed shear modulus �1 3�  kPa, 
has revealed only one difference at an angular acceleration � � 3 000 2, rad

s
. This 

indicates that the value of the shear modulus significantly contributes to the 
effect of hyperelasticity.

Discussion

Mesh Consideration. The findings of the mesh comparison, compiled in Table 3, 
indicate that finite element analysis (FEA) requires a sufficiently fine mesh in 
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Figure 5: Shown above are the results of the tests given an injury condition of (a) 0.1 
maximum shear strain and (b) 0.05 max shear strain. Data points in red reveal tests that 
recorded a maximum shear strain in the brain larger than the threshold. The differences 
between the viscoelastic and hyper-viscoelastic tests are highlighted in yellow.

(a)

(b)
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order to produce reliable results. This is due to a phenomenon called numerical 
dispersion. Numerical dispersion occurs in tests when the simulated material 
exhibits a higher dispersivity than the true material [8]. For the case of mod-
eling the brain, this means that deformation measures, such as strain, which 
are observed from the model will have a lower magnitude than what would be 
experienced by a real brain. Because the brain is especially compliant, it will be 
important for all researchers to check that numerical dispersion does not occur 
within their FEA models of the brain.

Hyperelastic Effect Dependent on Shear Modulus. Figure  5 on page 10 
reveals that the shear modulus plays an important role in determining how 
hyperelasticity will affect the resultant shear strains. For the upper bound of the 
relaxed shear modulus, where �1 3�  kPa, only 1 of 16 tests that profile the injury 
threshold yielded a different result for the two models. This is held in contrast to 
the lower bound. For this bound, where �1 1�  kPa, 8 of 25 tests that profile the 
injury threshold yielded different results for the two models. All 9 of the tests that 
revealed differences between models consistently showed that the hyperelastic 
model was more resistant to shear deformation than the viscoelastic model.

Figure 6: Shown above are two stress-stretch curves of hyperelastic Ogden models in uniaxial 
tension with corresponding linear elastic stress-stretch curves. As the stretch is increased, the 
hyperelastic curves demand higher stresses than the linear elastic curves. Also note that as α is 
increased, this phenomenon is exaggerated.
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Differences are Revealed at Extreme Loading Inputs. When �1 �  1 kPa, 
the hyperelastic component significantly contributes to the shear strain behav-
ior for loading parameters � � 450 2

rad
s  and �� � 2 4. rad

s . This shows that quick 
rotations with high accelerations are where the effects of hyperelasticity are 
significant.

Hyperelastic Effect Dependent on Shear Strain Threshold. As described 
in the Methods section on page 7, Figure 5a uses an injury threshold of γ > 0.10, 
as this has been considered the shear strain above which concussion is likely. 
Figure 5b uses a threshold of γ > 0.05 to study trends of the composition differ-
ences with higher strains. Figure 5 shows that the differences become exagger-
ated between the models as the threshold is increased. This result makes sense 
when considering the stress-stretch curve of a hyperelastic material. Figure  6 
below provides an example of a comparison between a hyperelastic and purely 
elastic stress-stretch curve, where stretch is defined as � � l

l0

. As is shown, the 
hyperelastic material requires greater stress in order to affect large strains. This 
attribute of hyperelastic materials helps to explain the resiliency of the models 
including the hyperelastic component.

Implications for Future Work. If a simple viscoelastic model is being used, 
then there will be less resistance to large shear strains. This means that if there 
are observable differences between the model and actuality, it would be that 
the brain experiences less shear strain than the model predicts. If, on the other 
hand, a hyper-viscoelastic model is being used, then any differences between the 
model and actuality would show that the model is more resistant to high shear 
strains than the true brain. This knowledge lets researchers with simple linear 
viscoelastic models know that their models tend to overestimate shear strain at 
extreme loading conditions. Furthermore, hyperelastic models with high shear 
moduli and large α values are more resistant to shear strain, meaning that the 
model tends to underpredict shear strain at extreme loading conditions. This 
is cause for warning as an underprediction in shear strain can lead to flaws in 
safety mechanism designs that allow for large shear strains to propagate in the 
brain, which are known to cause injury.

TDur [s] Δω [ rad
s ]

10–2.5229–10–1 100–100.75

Table 5: Material Comparison Loading Inputs. Evenly spaced values of TDur and Δω 
were selected on a logarithmic scale from the intervals below.



12 • Luke Humphrey

UMURJ • vol. 15, no. 1 • 2021

Conclusions

The following conclusions can be drawn from this research.

(1)	 The hyperelastic tendency is to reduce the maximum strain caused by 
rotational loads.

(2)	 The differences between viscoelastic and hyper-viscoelastic models 
increase as larger shear strains are affected on the brain.

(3)	 The relaxed shear modulus value contributes to the effect of hyperelas-
ticity on shear strain.

(4)	 It is at the extreme loading conditions where differences in models 
become significant. Significant differences between a viscoelastic and 
hyper-viscoelastic model are observed for tests when the angular acceler-
ation α > 435 rad

s2
 and the relaxed shear modulus of the brain is �1 1�  kPa. �

If a relaxed shear modulus of �1 3�  kPa is being used, the effect of 
hyperelasticity on shear strain is only observed for loads with angular 
accelerations � � 1 600 2, rad

s
.

(5)	 It is crucial for all researchers to ensure that numerical dispersion does 
not occur within FEA models of the brain.
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