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Evaluation of CDM and RBM Methods to 
Estimate Small Q-matrices
RAPHAEL  J EONG -H IN  CH IN

Introduction

Cognitive diagnosis models (CDMs) are psychometric models that assess one’s 
mastery of latent skills being tested. CDMs provide detailed feedback, including 
the probability of mastering a certain topic. Owing to CDMs’ effectiveness in 
determining strengths and weaknesses in the topics to be tested, researchers in 
the field are becoming more aware of CDMs and “assessment for learning rather 
than assessment of learning” (Ravand & Robitzsch, 2015).

Multiple formulations of CDMs have been proposed in psychometric lit-
erature such as deterministic inputs, noisy “and” gate (DINA) (de la Torre, 
2009), generalized DINA (GDINA) (de  la Torre, 2011), and log-linear cog-
nitive diagnosis models (LCDM) (Henson et  al., 2009). There are multiple 
packages to fit different CDMs, such as the cdmTools and CDM packages 
(Nájera et al., 2022; Robitzsch et al., 2022). These packages help researchers 
use CDMs to learn more about the examinees’ latent attributes based on 
their responses.

An important component of CDMs is the Q-matrix that informs the depen-
dency structure between the J test items and K latent attributes (Li et al., 2022; 
Xu & Shang, 2018) because the Q-matrix can be effectively used to design inter-
vention strategies. An example Q-matrix is shown in Table 1. ‘1’ in the matrix 
means that Skill K is required for mastery of Item J. Thus, Q-restricted latent 
class models have gained popularity in fields such as educational proficiency 
assessments, psychiatric diagnosis, and many more disciplines (Xu & Shang, 
2018). A  well-known usage of CDMs is to study the dependency between 
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mathematical questions (items) and their latent skills for the topic of fractions as 
shown in Table 2. Let the six attributes tested in this topic be:

1.	� Find the lowest common 
denominator.

2.	Add fractions.
3.	Subtract fractions.

4.	Multiply fractions.
5.	Divide fractions.
6.	� Convert mixed numbers to improper 
fraction.

The first item (mathematical question) in the test is 2 3
4

1 1
2

+ , where “find the �
lowest common denominator,” “add fractions,” and “convert mixed numbers 
to improper fractions” (skills 1, 2, and 6) are required for this question to be 
answered correctly. Thus, the rows of the Q-matrix corresponding to this item 
will contain the vector (1,1,0,0,0,1) as shown in Table 2.

The Q-matrix plays an important role in CDMs because it can be used to cate-
gorize test items and design future assessments (Li et al., 2022). However, not all 
assessments can be explicitly specified with a Q-matrix. Even if there is an explic-
itly specified Q-matrix, the Q-matrix may not be accurate due to the following 
reasons: (i) design error by the assessment provider; and (ii) one test item may 
be linked to multiple attributes, but not all attributes are found and identified. 
For example, error (i) is committed in the second row of Table 2 because skill 6 is �

Table 2: Q-matrix Corresponds to Three Math Questions and Six Latent Attributes

Questions Skill 1 Skill 2 Skill 3 Skill 4 Skill 5 Skill 6

2 3
4

1 1
2

+
1 1 0 0 0 1

2 3
4

1 1
2

-
1 0 1 0 0 1

2 3
4

1 1
4

-
0 0 1 0 0 0

Table 1: Q-matrix Corresponds to Four Items, Four Latent Attributes, and 24 = 16 Latent 
Classes

Items Attribute 1 Attribute 2 Attribute 3 Attribute 4
A 1 0 0 0
B 0 0 1 0
C 0 1 0 0
D 0 0 0 1
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not required to correctly answer 2 3
4

1 1
2

- . Thus, it is important to be able to learn �
more about the Q-matrix from the responses in order to have a better understand-
ing of the relationship between the test items and latent variables’ attributes.

Models

In this paper, the models of interest are the deterministic inputs, noisy “and” 
gate (DINA) model, the generalized-DINA (GDINA) model, and the restricted 
Boltzmann machines (RBMs). These three models are used in this paper to per-
form the following:

I. 	 Test the accuracy of RBMs used by Li et al. (2022) on the data generated 
with a small number of latent attributes KÎ{ }3 4 5, , .

II. 	Compare the outputs from (i) with the results from Xu & Shang (2018).
III.	 Compare the results generated from the “CDM” package with the results 
from (i) and (ii) (Robitzsch et al., 2022).

Deterministic Inputs, Noisy “and” Gate (DINA) Model

The DINA model assumes a conjunctive relationship among attributes, where 
it is necessary to possess all the attributes indicated by the Q-matrix for a posi-
tive response (Xu & Shang, 2018). For each cell of the Q-matrix, qjk is 1 if the kth 
attribute is required to correctly answer the jth item. In this model, an examin-
ee’s skills vector and the Q-matrix produce a latent response vector h hi ij={ }, �
where

h aij ik
q

k

K
jk=

=
Õ

1

 has a value of 1 if examinee i possesses all the skills required for item j or has 
a value of 0 if the examinee lacks at least one of the required skills (de la Torre, 
2009). K here represents the number of latent skills. Let Ri j, ,={ }0 1  represent the 
examinee i answering item j correctly. The uncertainties in this model are the 
slipping parameter, sj, and guessing parameter, gj, where

s P Rj i j ij= = =( | ), 0 1h

g P Rj i j ij= = =( | )., 1 0h
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Therefore, the probability of examinee i with skills vector a i answering item j 
correctly is given by

P P X g sj i ij i j j
ij ija a h h( ) = = = --( | ) ( )1 11 .

Generalized-DINA (GDINA) Model

Similar to the DINA model, the GDINA model requires a J K´  Q-matrix as well. 
For each cell of the Q-matrix, qjk  is 1 if the kth attribute is required to correctly 
answer the jth item. In addition, GDINA separates the latent classes into 2

*Kj  latent �
groups where K qj k

K

jk
* =

=å 1
 represents the number of required attributes �

for item j (de la Torre, 2011). Let a lj
*  be the reduced attribute vector whose ele-

ments are the required attributes for item j, and then the probability that exam-
inees with attribute pattern a lj

*  will answer item j correctly is denoted by

P X Pj lj lj( | ) .* *= = ( )1 a a

In the GDINA model, there are three types of link functions available. This paper 
focuses only on the identity link function given by

		
P lj j k

K

jk lk

k k

K

k

K

jkk lk lk

j

j j

a b b a

b a a

*
*

* *

.

( ) = +

+

=

¢= + =

-

¢ ¢

å
å å
0 1

1 1

1
...

... *

*

+
=Õb a

j K k

K

lk
j

j

12 1

� (1)

where
b j0 	 is the intercept for item j;
b jk 	 is the main effect due to ak;
b jkk¢ 	 is the interaction effect due to ak and a ¢k ; and
b
j Kj12... * 	 is the interaction effect due to a a1 ,..., *Kj

.

2.3 Restricted Boltzmann Machines (RBMs)

RBMs are generative stochastic artificial neural network models that can learn 
probability distributions over a collection of inputs. RBMs were initially invented 
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by Paul Smolensky under the name Harmonium (Smolensky, 1986). RBMs used 
in this paper follow the model design in Li et al. Visible units are denoted by 
R R Rj

J={ }Î1 0 1,... { , } , and hidden units are denoted by a a a={ }Î1 0 1,... { , }j
K. 

RBMs are characterized by the energy functions with their joint probability dis-
tribution given by

	 P R
Z

exp E R, ; , ;a q
q

a q( ) = ( ) - ( ){ }1 � (2)

where Z q( )  is the partition function given by

	 Z exp E R
R J Kq a q

a
( ) = - ( ){ }Î Îå å{ , } { , }

, ;
0 1 0 1

� (3)

and E R, ;a q( )  is the energy function given by

	
E R b R c R W R b c

R w

T T T
j

J

j j k

K

k k

j

J

k

K

j j

, ;a q a a a( ) = - - - = - -

-

= =

= =

å å
å å

1 1

1 1 ,,k ka
� (4)

In Equations 2–4, q ={ }b c W, ,  are the model parameters, b RJÎ  are visible 
biases, c RKÎ  are hidden biases, and W RJ KÎ ´  is the weight matrix describ-
ing the interactions between the visible and the hidden units. The hidden and 
visible units are conditionally independent as there are no “R-R” or “a a- ” 
interactions (Li et al., 2022). wj,k ≠ 0 in the weight matrix, W, for RBMs indicates 
the presence of interaction between the visible and the hidden units. Although 
DINA and GDINA models violate the conditionally independent assump-
tions of RBM, it was shown in Li et al. that the Q-matrices for these models are 
estimable.

Data

The data are simulated with latent attributes dimension KÎ{ }3 4 5, ,  and the num-
ber of test items, J = 20. The true Q-matrices chosen are identifiable and similar 
to those used in Xu & Shang (2018). The three true Q-matrices are
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In this study, the data is simulated from the DINA latent class model. The 
ground truth response probabilities for all items are between 0.2 and 0.8, and 
both the slipping and the guessing parameters are set to 0.2. The dependency 
of latent attributes, r , is set to r Î{ }0 0 15 0 25 0 5, . , . , . . The two-step simulation of 
true latent profiles follows those set in Xu & Shang (2018). First, xi  is generated �

with x x x Ni i iK= ( ) ( )1 0,..., ~ ,
i.i.d.

S  for i N= 1,...,  where S = -( ) +1 1 1r rIK K K
T . The 

attribute profile a ik  is set to be 1 if xik ≥ 0 and 0 otherwise. The response data is 
then generated using the ‘sim.din’ function from the CDM package.

Estimating the Q-matrix

The Q-matrices are estimated using the gdina function from the CDM package. 
As the response data follows the DINA model, a GDINA model can be fitted 
as the GDINA model is a generalized version of the DINA model. The gdina 
function will be used to fit the response data using both LASSO and Truncated 
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LASSO Penalty (TLP). The delta matrix returned by the function will be con-
verted into a J K´ -( )2 1  binary matrix (intercept column removed). The idea 
behind this is that because d b= ´ q, if d  is not 0, q is definitely not 0, where b  
and q  are elements in Equation (1). Values that are close to 0 in the delta matrix 
(smaller than 0.1) will be forced to be 0 and everything else to be 1. The J K´ 2  
binary matrix will be collapsed into a J K´  binary matrix by grouping up the 
latent attributes that are required to master the item J.

Let a Î{ }0 1, , 1 £ £k K , and d a aji iK i= ... 1  be the binary representation index 
of ith element in the jth row of the delta matrix. d ji  will be transformed to have a 
value of 1 if it is greater than the threshold and 0 otherwise.

			   tjk k

K

ji ik= =
=å 1

1d awhere � (6)

				    Q tjk jk
 = ¹1 0 iff � (7)

For example, let d = ( )1 4 1 32 0 08 2 1 0 0003 0 0001 0. , . , . , . , . , . , , J = 1 , K = 3, and thresh-
old = 0.1, then applying Equations (6), we get,

d = ( )Þ ( )1 5 1 7 0 01 2 9 0 008 0 0021 0 1 1 0 1 0 0 0. , . , . , . , . , . , , , , , , ,

t = ( , , )2 2 0

In Equation (6), the columns of the J K´ -( )2 1  binary matrix refer to (Attr1, 
Attr2, Attr3, Attr12, Attr13, Attr23, Attr123). The matrix is then collapsed into 
a J K´  matrix by summing up all the 1s into their respective latent attributes, 
where the columns refer to (Attr1, Attr2, Attr3). The estimated Q-matrix in Equa-
tion (7) is expected to be identifiable only up to rearranging the orders of the 
columns. This is because when estimating the Q-matrix, the columns do not con-
tain information about the latent attributes (e.g., the nth column of the Q-matrix 
might not refer to the nth latent attribute). Thus, the estimated Q-matrix will 
be reordered so that each column shows the lowest possible average congru-
ent coefficient with the True Q-matrix’s columns. This process is done using the 
“orderQ” function in cdmTools (Nájera et al., 2022).

Accuracy Measurement

To evaluate the estimation accuracy, the entry-wise overall error (OE), out-of-
true positive percentage error (OTP), and out-of-true negative percentage error 
(OTN) are reported. Their formulae are as follows:
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Results

In this study, the Q-matrices are estimated completely from the data. 
For K = 3, the following crossover design is applied for the DINA 
model, three sample sizes, and four attribute-dependent levels: 
DINA N{ }Ä ={ }Ä ={ }500 1000 2000 0 0 15 0 25 0 5, , , . , . , .r . For K = 4  and K = 5 , the 
designs are DINA N{ }Ä ={ }Ä ={ }1000 2000 0 0 15 0 25 0 5, , . , . , .r .

Table 3 shows the simulation results for 50 replications. From Table 3, it can 
be observed that, on average, TLP and RBM outperform the LASSO method. In 
the case of small N and small r , RBM usually outperforms the TLP method. 
However, as N and r  become larger, the TLP method is able to estimate a Q-ma-
trix more similar to the true Q-matrix. As N increases, accuracy also increases. 
This is because if there is more response data, the model has more data to learn 
and train from, resulting in a more accurate model. Surprisingly, across the three 

Table 3: Mean Accuracy (50 Repetitions) for K = 3, 4, 5, and J = 20

K N Model Accuracy (1-Error)
ρ = 0 ρ = 0.15 ρ = 0.25 ρ = 0.5

3 500 Lasso 0.8253 0.8587 0.8610 0.8613
TLP 0.8420 0.8650 0.8823 0.9023
RBM 0.8420 0.8727 0.8957 0.9017

1000 Lasso 0.9043 0.9117 0.9217 0.9220
TLP 0.9037 0.9453 0.9450 0.9593
RBM 0.8667 0.9123 0.9323 0.9400

2000 Lasso 0.9300 0.9703 0.9667 0.9550
TLP 0.9623 0.9813 0.9857 0.9930
RBM 0.8893 0.9390 0.9440 0.9513
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K N Model Accuracy (1-Error)
ρ = 0 ρ = 0.15 ρ = 0.25 ρ = 0.5

4 1000 Lasso 0.7375 0.7930 0.8030 0.8220
TLP 0.7528 0.8140 0.8515 0.8740
RBM 0.8285 0.8395 0.8588 0.8970

2000 Lasso 0.8323 0.8615 0.8738 0.8673
TLP 0.8453 0.8918 0.9008 0.9185
RBM 0.8553 0.8708 0.8928 0.9093

5 1000 Lasso 0.6500 0.6648 0.7006 0.7452
TLP 0.6500 0.6784 0.7188 0.7736
RBM 0.8282 0.8534 0.8404 0.8432

2000 Lasso 0.7096 0.7768 0.8122 0.8348
TLP 0.7228 0.8004 0.8330 0.8990
RBM 0.8668 0.8730 0.8850 0.8714

Table 3: (Continued)

different methods, the accuracy increases as the correlation among attributes 
increases. This may be because the higher the dependency among the attributes, 
the lesser the number of possible attribute patterns, making estimation relatively 
easier (Li et al., 2022).

Conclusion and Future Direction

In conclusion, it is shown in Table 3 that the CDMs with TLP method outper-
formed the ones with LASSO method. Moreover, it is interesting to see that the 
RBM models have stable performance for K £ 5 . The RBM models always have 
an accuracy of 82% or more for these data while CDMs perform badly when N 
is small.

The future work of interest would be to explore different ways to include 
interactions between latent attributes so that the assumptions set in RBM will 
not be violated. In practice, it is hard to find latent attributes that do not correlate 
with one another. Thus, by addressing this latent attribute interaction problem, 
the RBM method that has higher accuracy can be created. One potential way to 
address this problem may be integrating deep learning into the RBM method.

Owing to the success and stability of the RBM method in learning dichoto-
mous item responses, it will also be interesting to implement the RBM method in 
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research that uses polytomous item responses. This is because a lot of question-
naires contain responses in the form of a 5-point or 7-point Likert scale. It will be 
interesting to study how different levels of responses correlate with mastering 
a certain skill or how the slipping and guessing parameters are affected by the 
way the questions were phrased. For example, an examinee may have the skills 
to answer a mathematical question correctly, but because the questions contain 
ambiguity and poor word choices, the examinee may be unable to answer the 
question.
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